- Let $m$ denote the Lebesgue measure on $β$.
-
Define the Lebesgue outer measure $m^*$ and what it means for $E β β$ to be Lebesgue measurable.
- Show that for any subsets $E_1, E_2, β¦$ of $β$,
$$
m^*\left(\bigcup_{n=1}^β E_n\right) β©½ \sum_{n=1}^β m^*\left(E_n\right)
$$
- Let $F_1 β F_2 β β―$ be Lebesgue measurable sets with $m\left(F_1\right)<β$. Use countable additivity to show that
$$
m\left(\bigcap_{n=1}^β F_n\right)=\lim_{n ββ} m\left(F_n\right) .
$$
- Let $\left(E_n\right)_{n=1}^β$ be a sequence of Lebesgue measurable sets with $\sum_{n=1}^β m\left(E_n\right)<β$ and set $E=\bigcap_{n=1}^β \bigcup_{r β©Ύ n} E_r$. Show that $m(E)=0$.
- Let $\left(f_n\right)_{n=1}^β$ be a sequence of measurable functions from $[0,1]$ to $β$.
- Show that for each $n β β$, there exists $a_n β β$ with
$$
m\left(\left\{x β[0,1]:\left|f_n(x)\right|>a_n / n\right\}\right)<2^{-n}
$$
- Deduce that for almost all $x β[0,1]$,
$$
\frac{f_n(x)}{a_n} β 0 β \text { as } n ββ
$$
- State Fubiniβs and Tonelliβs theorems for a measurable function $f:β^2ββ$
- Let $a>1$.
- Show that the function $f(x, y)=e^{-x y}$ is integrable on $[0,β)Γ[1, a]$.
- Show that Frullani integral
$$
β«_0^β \frac{e^{-x}-e^{-a x}}{x} \mathrm{~d} x=\log a
$$
- Is the function $g(x, y)=e^{-x y}-a e^{-a x y}$ integrable over $[0,1]Γ[1,β)$ ? Justify your answer.
- Let $f:[0,1] β β$ be measurable. Suppose that the function
$$
g(x, y)=f(x)-f(y)
$$
is integrable on $[0,1]Γ[0,1]$. Must $f$ be integrable on $[0,1]$ ? Justify your answer.
-
-
- Define a simple function $Ο:ββ[0,β]$, and state an expression for the Lebesgue integral of $Ο$.
- Let $f:ββ[0,β]$ be measurable. Explain how to define its Lebesgue integral $β«_βf$.
- Let $f:ββ[-β,β]$ be measurable. What does it mean for $f$ to be Lebesgue integrable, and in that case define $β«_βf$.
- Suppose that $f,g:ββ[-β,β]$ are Lebesgue integrable with $f(x)β©½g(x)$ for all $x$. Show that $β«_βfβ©½β«_βg$.
- Determine whether the following measurable functions are Lebesgue integrable over the specified set. Justify your answers.
- $f(x)=\frac{\cos x}{x}$ over $(1,β)$.
- $g(x)=\frac{\cos(1/x)}{x}$ over $(0,1)$.
- $h(x)=\frac{\sin x}{e^x-1}$ over $(0,β)$.
- Write $β^1(β)=\{f:βββ:f\text{ is integrable}\}$ and define ${βfβ}_1=β«_β{|f|}$ for $fββ^1(β)$
- Let $\left(f_n\right)_{n=1}^β$ and $\left(g_n\right)_{n=1}^β$ be sequences in $β^1(β)$, and suppose that $f,g:βββ$ are such that $f_nβf$ and $g_nβg$ almost everywhere, and that $gββ^1(β)$. Suppose that $\left|f_n\right|β©½g_n$ for all $nββ$ and $\left\|g_n\right\|_1β{βgβ}_1$. Show $fββ^1(β)$ and $β«_βf_nββ«_βf$.
- Show that $\left\|f_n-f\right\|_1β0$.
ScheffΓ©'s Lemma
Solution
- For any interval $I$ with endpoints $a$ and $b$, define ${|I|}=b-a$.
For $A β β$, we define the Lebesgue outer measure
$$
m^*(A)=\inf \left\{\sum_{n=1}^β \left|I_n\right|: I_n \text { are intervals}, A β \bigcup_{n=1}^β I_n\right\},
$$For $Eββ$, we say $Eββ³_\text{Leb}$ if for all $A β β$$$m^*(A)=m^*(A β© E)+m^*(A β E)$$
- If $m^*(E_n)=β$ for some $n$, the inequality clearly holds. Assume $m^*(E_n)<β\ βn$.
For any $Ξ΅>0$, let $I_{1, n}, I_{2, n}, β¦$ be a sequence of intervals cover $E_n$ such that
\[
\sum_{j=1}^β m\left(I_{j, n}\right)β€\fracΞ΅{2^n}+m^*(E_n)
\]
Summing over $n$
\[
\sum_{n=1}^β \sum_{j=1}^βm\left(I_{j, n}\right) β€ Ξ΅+\sum_{n=1}^βm^*(E_n)
\]
Since $\left\{I_{j, n}: j, nββ€^+\right\}$ cover $\bigcup_{n=1}^β E_n$ we have $m^*\left(\bigcup_{n=1}^β E_n\right)β€Ξ΅+\sum_{n=1}^βm^*(E_n)$.
Let $Ο΅β0$ we get $m^*\left(\bigcup_{n=1}^β E_n\right)β€\sum_{n=1}^βm^*(E_n)$. - Set $E_n=F_1 β F_n$, then $E_1 β E_2 β β¦$
Set $A_1=E_1;βn>1,A_n=E_nβE_{n-1}$. Then $A_1,β¦$ are disjoint. By countable additivity
$$m\left(\bigcup_{n=1}^β E_n\right)=m\left(\bigcup_{n=1}^β A_n\right)=\lim_{n ββ}\sum_{k=1}^nm\left(A_k\right)=\lim_{n ββ}m\left(E_n\right)$$
By additivity $m\left(E_n\right)=m(F_1)-m\left(F_n\right),m\left(\bigcap_{n=1}^β F_n\right)=m(F_1)-m\left(\bigcup_{n=1}^β E_n\right),$
we get $
m\left(\bigcap_{n=1}^β F_n\right)=\lim_{n ββ} m\left(F_n\right) .$
- By (ii) $m\left(\bigcup_{r β©Ύ n} E_r\right)β©½\sum_{r β©Ύ n} m\left(E_r\right)$. Since $\sum_{n=1}^β m\left(E_n\right)<β$$$\lim_{nββ} m\left(\bigcup_{r β©Ύ n} E_r\right)β©½\lim_{nββ} \sum_{r β©Ύ n} m\left(E_r\right)=0$$Apply (iii) to the decreasing sequence $F_n=\bigcup_{rβ©Ύn}E_r$
$$
m(E)=\lim_{nββ} m\left(\bigcup_{r β©Ύ n} E_r\right)=0
$$
- Apply a(iii) to $F_r=\left\{xβ[0,1]:\left|f_n(x)\right|>r / n\right\}$, since $F_1 β F_2 ββ¦$ and $m(F_1)β©½1$,
\[m\left(\bigcap_{r=1}^β F_r\right)=\lim_{rββ}m(F_r)\]
But $\bigcap_{r=1}^β F_r=β
$, so $\lim_{rββ}m(F_r)=0$, so β$a_n:m\left(F_{a_n}\right)<2^{-n}$
- Fix $x$, if $\frac{f_n(x)}{a_n} β 0$, $βnβmβ©Ύn:\left|f_m(x)\over a_m\right| > \frac1n$, so $\left|f_m(x)\right| > \frac{a_m}{m}$, so $xβE=\bigcap_{n=1}^β \bigcup_{m β©Ύ n} E_m$.
Apply a(iv) to $E_n=\left\{x β[0,1]:\left|f_n(x)\right|>a_n / n\right\}$, since $\sum_{n=1}^β m\left(E_n\right)<\sum_{n=1}^β2^{-n}<β$
we have $m(E)=0$, so $\frac{f_n(x)}{a_n} β 0$ for almost every $xβ[0,1]$
- [Fubiniβs Theorem] Let $f:β^2ββ$ be integrable. Then, for almost all $y$, the function $xβ¦f(x,y)$ is integrable. Define $F(y)=β«_βf(x,y)dx$, then $F$ is integrable, and$$\int_{β^2} f(x, y) d(x, y)=\int_βF(y) d y$$[Tonelliβs Theorem] Let $f:β^2ββ$ be measurable. Suppose that either of$$\int_β\left(\int_β{|f(x, y)|} d x\right) d y, \quad \int_β\left(\int_β{|f(x, y)|} d y\right) d x$$ is finite, then $f$ is integrable.
- $e^{-x y}>0$. For $yβ[1,a]$, by MCT, $β«_0^β e^{-x y} d x=\lim_{n ββ}\frac{1-e^{-n y}}{y}=\frac{1}{y}$$$β«_1^aβ«_0^β e^{-x y} d xdy=\log a<β$$By Tonelli's theorem, $e^{-x y}$ is integrable on $[0,β)Γ[1, a]$.
- By Fubini's theorem
$$
β«_0^β \frac{e^{-x}-e^{-a x}}{x} d x=β«_0^β β«_1^a e^{-x y} d y d x=\log a
$$
- [Sheet 5 Q3a] $g(x, y) = f(xy)-af(axy)$. By linearity of the integral
$$
\int_0^1 g(x, y) d x=\int_0^1 f(x y) d x-a \int_0^1 f(a x y) d x
$$
Since $f$ is integrable, by changes of variable $yβ¦x y$ and $yβ¦ay$\[\frac{1}{x} β«_0^β f(y) d y=β«_0^β f(x y) d y=a β«_0^β f(a x y) d y\]Since $f>0$, Baby MCT ensures that
$$
\lim _{n β β} β«_0^n g(x, y) d y=\lim _{n β β}\left(β«_0^n f(x y) d y-a β«_0^n f(a x y) d y\right)=0 .
$$
$|g|$ is dominated in $y$ by the integrable function $f(x y)+a f(a x y)$, by DCT
$$
β«_0^β g(x, y) d y=0
$$For $y>0$ we have
$$
β«_0^1g(x,y)d x=\left[e^{-axy}-e^{-xy}\over y\right]_0^1=\frac{e^{-a y}-e^{-y}}{y}<0
$$and $g(x, y)=g(y, x)$, so $β«_0^1 g(x, y) d y<0$. Thus $β«_1^β g(x, y) d y>0$, whenever $x>0$.
If $g$ is integrable over $(0,1) Γ(1, β)$, then Fubini's theorem would imply that
$$
0<β«_0^1 β«_1^β g(x, y) d y d x=β«_1^β β«_0^1 g(x, y) d x d y<0 .
$$
- By Fubini $βx_0β[0,1]$ such that $\int_0^1{|f(x_0)-f(y)|}dy<β$. Then$$\int_0^1{|f(y)|}dyβ€\int_0^1{|f(y)-f(x_0)|}dy+\int_0^1{|f(x_0)|}dx<β$$Therefore $f$ is integrable on $[0,1]$
-
- A simple function $Ο:ββ[0,β]$ has the form $Ο=\sum^n_{i=1}Ξ±_iΟ_{B_i}$ with $Ξ±_i>0,B_iββ³_\text{Leb}$. Then $β«_β Ο=\sum^n_{i=1}Ξ±_im(B_i)$.
- $β«_βf=\sup\{β«_βΟ:0β©½Οβ©½f,Ο\text{ simple}\}$
- $f^+=\max(f,0)$, $f^-=\max(-f,0).$
$f$ is integrable iff $β«_βf^+$ and $β«_βf^-$ are both finite, define $β«_βf=β«_βf^+-β«_βf^-$.
- Assume $0β©½f$ then $\{β«_βΟ:0β©½Οβ©½f,Ο\text{ simple}\}β\{β«_βΟ:0β©½Οβ©½g,Ο\text{ simple}\}$,
so $β«_βf=\sup\{β«_βΟ:0β©½Οβ©½f,Ο\text{ simple}\}β©½\sup\{β«_βΟ:0β©½Οβ©½g,Ο\text{ simple}\}=β«_βg$
In general, $\left.\begin{array}l0β©½f^+β©½g^+ββ«_βf^+β©½β«_βg^+\\0β©½g^-β©½f^-ββ«_βg^-β©½β«_βf^-\end{array}\right\}$Subtracting, $β«_βfβ©½β«_βg$.
- For $xβ[nΟ,(n+1)Ο]$, $\left|\frac{\cos x}{x}\right|β©Ύ{|\cos x|\over(n+1)Ο}$ we have
$$
β«_{n Ο}^{(n+1)Ο}\left|f(x)\right|β©Ύ\frac{β«_{n Ο}^{(n+1)Ο}{|\cos x|}}{(n+1)Ο}=\frac2{(n+1)Ο}
$$
Since harmonic series diverges, $f$ is not integrable over $(1,β)$.
- Substitute $u=x^{-1}$
$$\int_0^1g=β«_β^1\frac{\cos(1/x^{-1})}{x^{-1}}(-x^{-2})dx=β«_1^βf=β$$
- $\lim_{xβ0}h(x)=\lim_{xβ0}\frac{x+O(x^2)}{x+O(x^2)}=1$, so $h$ is bounded on $[0,1]$, so $h$ is integrable on $[0,1]$.
For $xβ©Ύ1$, we have $\left|\frac{\sin x}{e^x-1}\right|β©½\frac1{e^x-1}$. Substitute $u=e^x$,
$$\int_1^β\frac1{e^x-1}dx=\int_e^β\frac1{u(u-1)}du=\log\left(u-1\over u\right)|_e^β=1-\log(e-1)$$
By comparison $h$ is integrable on $[1,β)$. So $h$ is integrable on $[0,β)$.
- A sequence of measurable functions $f_nβf$ a.e. so $f$ is measurable.
$βnββ:\left|f_n\right|β©½g_n$, $f_nβf,g_nβg$ a.e. So ${|f|}β©½g$ a.e. But $gββ^1(β)$, so $fββ^1(β)$.
Let $B_n=\{xββ:g_n(x)>g(x)\}$. Then $\left|f_n\right|Ο_{ββB_n}β©½g_nΟ_{ββB_n}β©½g$.
By DCT $\lim_{nββ}β«_{ββB_n}f_n=β«_βf$. Again by DCT $\lim_{nββ}β«_{ββB_n}g_n=β«_βg$.
$\left.\begin{array}r\lim_{nββ}β«_{ββB_n}g_n=β«_βg\\\lim_{nββ}β«_βg_n=β«_βg\end{array}\right\}$Subtracting,$\lim_{nββ}β«_{B_n}g_n=0$,by comparison,$\lim_{nββ}β«_{B_n}f_n=0$.
Therefore $\lim_{nββ}β«_βf_n=\lim_{nββ}β«_{B_n}f_n+\lim_{nββ}β«_{ββB_n}f_n=β«_βf$.
- If $f_nβf$ a.e. then ${|f_n-f|}β0$ a.e.
Let $F_n={|f_n-f|},F=0,G=2g$. Then $F_nβF$ a.e.
If ${|f_n|}β€g$ and $f_nβf$ a.e. then ${|f|}β€g$ a.e. so ${|f_n-f|}β€2g$ a.e.
${|F_n|}β€G$ and $β«_βG<β$, by DCT $β«_βF_nββ«_βF$.