-
- Let $A$ be a subset of β. Define the outer (Lebesgue) measure $m^*(A)$ of $A$. What does it mean to say that $A$ is a null set? What does it mean to say that $A$ is (Lebesgue) measurable? Let $A_n$ be subsets of β for $n=1,2, β¦$. Show that $$ m^*\left(\bigcup_{n=1}^β A_n\right) β©½ \sum_{n=1}^β m^*\left(A_n\right) . $$
- Let $A^{(2)}=\left\{x^2: x β A\right\}$. Show that the following statements are true.
- If $A β[0,1]$, then $m^*\left(A^{(2)}\right) β©½ 2 m^*(A)$.
- If $A$ is a null subset of β, then $A^{(2)}$ is null.
-
- Give an example, without proof, of a continuous function $Ξ¨: β β β$ and a null set $E$ such that $Ξ¨(E)$ is not null.
- Let $f: β β β$ be a continuous function, and assume that $f(E)$ is null for every null set $E$. Let $A$ be a measurable subset of β. Show that $f(A)$ is measurable. [You may assume that $A=\bigcup_{n=1}^β K_n βͺ F$ where $K_n$ are closed subsets of β and $F$ is null, and you may use standard facts about measurable sets.]
- Let $g: β β β$ be a function such that $g(A)$ is measurable for all measurable sets $A$ of β. Let $E$ be a null subset of β. Show that $g(E)$ is null. [You may assume without proof that every measurable subset of β which is not null contains a non-measurable subset of β.]
A set with strictly positive Lebesgue measure doesn't have to contain an interval
- For an interval $I$ in β and $p β©Ύ 1$, $L^p(I)$ denotes the vector space of (equivalence classes of) measurable functions $f: I β β$ such that $|f|^p$ is integrable. Moreover, $Ο_I$ denotes the characteristic (indicator) function of $I$.
-
- Let $Ξ± β β$ and $Ξ²>0$. For which values of $Ξ±$ and $Ξ²$ is $x^Ξ±\left(1+x^Ξ²\right)^{-1} β$ $L^1(0, β)$?
- Let $Ξ²>0$. For which values of $p β©Ύ 1$ is $x\left(1+x^Ξ²\right)^{-1} β L^p(0, β)$ ?
- Let $Ξ²>Ξ±>0$. For which values of $p β©Ύ 1$ is $\left(x^Ξ±+x^Ξ²\right)^{-1} β L^p(0, β)$ ? You should justify your answers, but you may use standard facts about integrability of $x^Ξ±$.
- Let $f(x)=x\left(1+\mathrm{e}^x \sin ^2 x\right)^{-1}$ for $x>0$. By comparing $f(x)$ with a function of the form
$$
\left(1+x^2\right)^{-1}+\sum_{k=1}^β c_k Ο_{I_k}(x)
$$
for suitable $c_k>0$ and intervals $I_k$, or otherwise, show that $f β L^1(0, β)$.
[Your answer should explain how you would choose $c_k$ and $I_k$ in order to show that $f$ is integrable, and why it is possible to choose them in that way. It is not necessary to specify precise choices of $c_k$ and $I_k$.]
For which values of $p>1$ is $f β L^p(0, β)$ ? Give a brief explanation of your answer. - State HΓΆlder's inequality.
Let $f$ be a measurable function on $(0, β)$, and assume that $β«_0^β{|f g|}β©½\left(β«_0^β{|g|}^2\right)^{1 / 2}$ for all $g β L^2(0, β)$. Show that $f β L^2(0, β)$.
-
- Let $f: I β β$ be a function defined by a formula of the form $$ f(x)=β«_J g(x, t) \mathrm{d} t $$ where $I$ and $J$ are intervals and $g: I Γ J β β$ is a suitable function. State and prove a theorem that gives sufficient conditions for differentiability of $f$ and a formula for $f'(x)$. [You may use the Dominated Convergence Theorem without proof.]
- Define $f: β β β$ by $$ f(x)=β«_β \frac{t \sin (x t)}{\left(1+t^2\right)^2} \mathrm{~d} t $$ Show carefully that $f$ is differentiable on β, and that $$ x f'(x)=β«_β \frac{2 t\left(1-t^2\right) \sin (x t)}{\left(1+t^2\right)^3} \mathrm{~d} t $$ for all $x β β$. At which points $x β β$ does $f''(x)$ exist?
Solution
-
- Let $m(I)$ be the length of an interval $I$.
$$
m^*(A)=\inf \left\{\sum_{n=1}^βm\left(I_n\right): I_n \text { intervals, } A β \bigcup_{n=1}^βI_n\right\}
$$
$A$ is null if $m^*(A)=0$.
$A$ is measurable if $m^*(A)=m^*(A β© E)+m^*(Aβ E)$ for all subsets $E$ of β.
Let $Ξ΅>0$. For each $n$, there exist intervals $I_{r n}$ such that $A_n β \bigcup_{r=1}^βI_{r n}$ and $\sum_r m\left(I_{r n}\right)<m^*\left(A_n\right)+Ξ΅ 2^{-n}$. Now $\left\{I_{r n}: r, n=1,2, β¦\right\}$ is a countable family of intervals covering $\bigcup A_n$, so $$ m^*\left(\bigcup_n A_n\right)=\sum_n \sum_r m\left(I_{r n}\right)<\sum_n\left(m^*\left(A_n\right)+Ξ΅ 2^{-n}\right)=\sum_n m^*\left(A_n\right)+Ξ΅ $$ Hence $m^*\left(\bigcup_n A_n\right) β€ \sum_n m^*\left(A_n\right)$. -
- Let $I$ be an interval with endpoints $a, b$ where $0 β€ a<b β€ 1$. Then $m\left(I^{(2)}\right)=b^2-a^2=(b+a)(b-a) β€ 2 m(I)$.
Let $A β[0,1]$. Let $I_n$ be intervals such that $A β \bigcup_n I_n$ and (without loss of generality) $I_n β[0,1]$. Then $A^{(2)} β \bigcup_n I_n^{(2)}$, so $$ m^*\left(A^{(2)}\right) β€ \sum_n m\left(I_n^{(2)}\right) β€ 2 \sum_n m\left(I_n\right) $$ Taking the infimum gives $m^*\left(A^{(2)}\right) β€ 2 m^*(A)$. - Consider $A β©[0, k]$, where $k β β$. By a minor variation of the above, $m^*\left((A β©[0, k])^{(2)}\right) β€2 k m^*(A β©[0, k]) β€ 2 k m^*(A)=0$. Similarly $m^*\left((A β©[-k, 0])^{(2)}\right)$ is null. Now $A^{(2)}$ is the union of the countably many sets of the form $(A β©[-k, 0])^{(2)}$ or $(A β©[0, k])^{(2)}$, so $m^*\left(A^{(2)}\right)=0$, by (a).
- Let $I$ be an interval with endpoints $a, b$ where $0 β€ a<b β€ 1$. Then $m\left(I^{(2)}\right)=b^2-a^2=(b+a)(b-a) β€ 2 m(I)$.
- Consider the function $Ξ¨$ defined on the Cantor set $C$ by $$ Ξ¨\left(\sum_{n=1}^βa_n 3^{-n}\right)=\sum_{n=1}^β{a_n\over2} 2^{-n} β \text { if } a_n β\{0,2\} \text { for all } n $$ and extended to be monotonic and continuous on $[0,1]$ and 0 on $(-β, 0]$ and 1 on $[1, β)$. Then $C$ is null and $Ξ¨(C)=[0,1]$ which is not null.
- Let $A=\bigcup_n K_n βͺ F$, where $K_n$ is closed and $F$ is null. Consider $E_{k n}:=K_n β©[-k, k]$. This set is closed and bounded, hence compact. Since $f$ is continuous, $f\left(E_{k n}\right)$ is compact, hence closed and therefore measurable. Also, $f(F)$ is null hence measurable. Now $$ f(A)=\bigcup_{k, n} f\left(E_{k n}\right) βͺ f(F) $$ This is a countable union of measurable sets, and so is measurable.
- Suppose that $E$ is null and the measurable set $g(E)$ is not null. By the given information, $g(E)$ contains a non-measurable set $B$. Let $A=E β© g^{-1}(B)$. Then $A β E$, so $A$ is null, and $g(A)=B$, which is not measurable. This is a contradiction.
- Let $m(I)$ be the length of an interval $I$.
$$
m^*(A)=\inf \left\{\sum_{n=1}^βm\left(I_n\right): I_n \text { intervals, } A β \bigcup_{n=1}^βI_n\right\}
$$
$A$ is null if $m^*(A)=0$.
-
- $x^Ξ± β L^1(0,1)$ if and only if $Ξ±>-1$, and $x^Ξ± β L^1(1, β)$ if and only if $Ξ±<-1$. All the functions in parts (a) and (b) are continuous on $(0, β)$, hence measurable.
- On $(0,1), x^Ξ± / 2 β€ f(x) β€ x^Ξ±$, so by comparison $f β L^1(0,1)$ if and only if $Ξ±>-1$. On $(1, β), x^{Ξ±-Ξ²} / 2<f(x)<x^{Ξ±-Ξ²}$, so $f β L^1(1, β)$ if and only if $Ξ±-Ξ²<-1$. Hence $f β L^1(0, β)$ if and only if $Ξ±>-1$ and $Ξ²>Ξ±+1$.
- $\left(x\left(1+x^Ξ²\right)^{-1}\right)^p$ is comparable with $x^p\left(1+x^{p Ξ²}\right)^{-1}$. From (i) it is integrable if and only if $p>-1$ (which is automatic) and $p Ξ²>p+1$, i.e. $Ξ²>1+1 / p$.
- $\left(x^Ξ±+x^Ξ²\right)^{-1}=\frac{x^{-Ξ±}}{1+x^{Ξ²-Ξ±}}$. This is in $L^p(0, β)$ if and only if $Ξ± p<1$ and $Ξ² p>1$, i.e $1 / Ξ±<p<1 / Ξ²$.
- Note that $f$ is non-negative, and continuous on $[0, β)$, hence bounded and integrable on $(0, Ο)$, so it suffices to check integrability on $(Ο, β)$. We will take intervals $I_k=\left(k Ο-Ξ΄_k, k Ο+Ξ΄_k\right)$, where $Ξ΄_k β(0, Ο / 2)$ are to be chosen. We will assume that $\left(Ξ΄_k\right)_{k β₯ 1}$ are decreasing. On the interval $I_k$, $$ 0<f(x)<k Ο+1=:c_k . $$ We want to arrange that $\sum_k c_k Ξ΄_k<β$ and $f(x)<\left(1+x^2\right)^{-1}=:g(x)$ if $x β\left(k Ο+Ξ΄_k,(k+1) Ο-Ξ΄_{k+1}\right)$. For those $x$, $$ f(x)<\frac{(k+1) Ο}{\mathrm{e}^{k Ο} \sin ^2 Ξ΄_{k+1}}<\frac{(k+1) Ο^3}{4 \mathrm{e}^{k Ο} Ξ΄_{k+1}^2}, β g(x)>\frac{1}{(k+1)^2 Ο^2}, $$ using Jordan's inequality. So it suffices that $$ Ξ΄_{k+1}^2>(k+1)^3 Ο^5 \mathrm{e}^{-k Ο} $$ We may take $Ξ΄_{k+1}=(k+1)^2 Ο^3 \mathrm{e}^{-3 k / 2}$ (for example). This sequence is decreasing, and satisfies $\sum_k c_k Ξ΄_k<β$. With these choices of $c_k$ and $Ξ΄_k$, we have that $$ β«_Ο^βf β€ \frac{Ο}{2}+\sum_{k=1}^β2 Ξ΄_k c_k<β $$ $f β L^p(0, β)$ for all $p β₯ 1$ ($p$ finite). The same proof works with minor modifications.
- Let $f β L^p$ and $g β L^q$, where $p, q>1$ and $1 / p+1 / q=1$. Then $f g β L^1$ and $β«{|f g|} β€\left(β«{|f|}^p\right)^{1 / p}\left(β«{|g|}^q\right)^{1 / q}$.
Let $$ g_n(x)= \begin{cases}\min ({|f(x)|}, n) & \text { if }|x|<n \\ 0 & \text { if }|x|>n .\end{cases} $$ Then $g_n$ is bounded, measurable, and supported by $[-n, n]$, so $\left|g_n\right|^2$ is integrable. By assumption, $$ \left(β«\left|f g_n\right|\right)^2 β€ β«\left|g_n\right|^2 β€ β«\left|f g_n\right| . $$ Hence (even if $\left.β«\left|f g_n\right|=0\right) β«\left|f g_n\right| β€ 1$. As $n β β,\left|f g_n\right|$ increases (pointwise) to ${|f|}^2$, so by MCT, $β«{|f|}^2 β€ 1$, and $f β L^2$.
- $x^Ξ± β L^1(0,1)$ if and only if $Ξ±>-1$, and $x^Ξ± β L^1(1, β)$ if and only if $Ξ±<-1$. All the functions in parts (a) and (b) are continuous on $(0, β)$, hence measurable.
-
- Let $I$ and $J$ be intervals in β, and $g: I Γ J β β$ be a function such that:
- for each $x$ in $J, t β¦ g(x, t)$ is integrable over $I$,
- for each $x$ in $I$ and $t$ in $J, \frac{β g}{β x}(x, t)$ exists,
- there is an integrable $h: J β β$ such that for each $x$ in $I,\left|\frac{β g}{β x}(x, t)\right| β€ h(t)$ a.e. $(t)$.
- Let $g(x, t)=\frac{t \sin (t x)}{\left(1+t^2\right)^2}$. Then $\frac{β g}{β x}=\frac{t^2 \cos (t x)}{\left(1+t^2\right)^2}, β\left|\frac{β g}{β x}\right| β€ \frac{1}{1+t^2}$.
Since $\left(1+t^2\right)^{-1}$ is integrable over β, the theorem in (a) shows that $f$ is differentiable on β, and $$ f'(x)=β«_β \frac{t^2 \cos (t x)}{\left(1+t^2\right)^2} \mathrm{~d} t $$ Integration by parts on $[-k, k]$ gives $$ β«_{-k}^k \frac{x t^2 \cos (t x)}{\left(1+t^2\right)^2} d t=\frac{2 k^2 \sin (t k)}{\left(1+k^2\right)^2}+β«_{-k}^k \frac{2 t\left(1-t^2\right) \sin (t x)}{\left(1+t^2\right)^3} \mathrm{~d} t $$ Since $\left|2 t\left(1-t^2\right) \sin (t x)\over\left(1+t^2\right)^3\right| β€ {2\over1+t^2}$, the function is integrable over β and $$ x f'(x)=\lim _{k β β} β«_{-k}^k \frac{x t^2 \cos (t x)}{1+t^2} d t=β«_β \frac{2 t\left(1-t^2\right) \sin (t x)}{\left(1+t^2\right)^3} \mathrm{~d} t $$ Now, $$ \left|\frac{β}{β x}\left(\frac{2 t\left(1-t^2\right) \sin (t x)}{\left(1+t^2\right)^3}\right)\right|=\left|\frac{2 t^2\left(1-t^2\right) \cos (t x)}{\left(1+t^2\right)^3}\right| β€ \frac{2}{1+t^2} $$ As before, we may apply the theorem in (a) to deduce that $x f'(x)$ is differentiable on β. Since $x^{-1}$ is differentiable on $ββ\{0\}$, it follows that $f'(x)=x^{-1}\left(x f'(x)\right)$ is differentiable on $ββ\{0\}$. For $x β(0,1)$, \begin{align*} -\frac{f'(x)-f'(0)}x&=\frac{2}{x} β«_0^β\frac{t^2(1-\cos (t x))}{\left(1+t^2\right)^2} \mathrm{~d} t\\&=2 β«_0^β\frac{y^2(1-\cos y)}{\left(x^2+y^2\right)^2} \mathrm{~d} y\\&>2 β«_0^β\frac{y^2(1-\cos y)}{\left(1+y^2\right)^2} \mathrm{~d} y\\&>0 \end{align*} So, if $f''(0)$ exists, $f''(0)<0$. However, $f'$ is an even function, so if $f''(0)$ exists, it must be 0 . Consequently, $f''(0)$ does not exist.
- Let $I$ and $J$ be intervals in β, and $g: I Γ J β β$ be a function such that:
PREVIOUSIntegration 2018 Exam