Integration 2022 Exam Original

 
  1. Let $m$ denote the Lebesgue measure on $ℝ$.
      1. Define the Lebesgue outer measure $m^*$ and what it means for $E βŠ† ℝ$ to be Lebesgue measurable.
      2. Show that for any subsets $E_1, E_2, …$ of $ℝ$, $$ m^*\left(⋃_{n=1}^∞ E_n\right) β©½ \sum_{n=1}^∞ m^*\left(E_n\right) $$
      3. Let $F_1 βŠ‡ F_2 βŠ‡ β‹―$ be Lebesgue measurable sets with $m\left(F_1\right)<∞$. Use countable additivity to show that $$ m\left(β‹‚_{n=1}^∞ F_n\right)=\lim _{n β†’βˆž} m\left(F_n\right) . $$
      4. Let $\left(E_n\right)_{n=1}^∞$ be a sequence of Lebesgue measurable sets with $\sum_{n=1}^∞ m\left(E_n\right)<∞$ and set $E=β‹‚_{n=1}^∞ ⋃_{r β©Ύ n} E_r$. Show that $m(E)=0$.
    1. Let $\left(f_n\right)_{n=1}^∞$ be a sequence of measurable functions from $[0,1]$ to $ℝ$.
      1. Show that for each $n ∈ β„•$, there exists $a_n ∈ ℝ$ with $$ m\left(\left\{x ∈[0,1]:\left|f_n(x)\right|>a_n / n\right\}\right)<2^{-n} $$
      2. Deduce that for almost all $x ∈[0,1]$, $$ \frac{f_n(x)}{a_n} β†’ 0   \text { as } n β†’βˆž $$
    1. State Fubini’s and Tonelli’s theorems for a measurable function $f:ℝ^2→ℝ$
    2. Let $a>1$.
      1. Show that the function $f(x, y)=e^{-x y}$ is integrable on $[0,∞)Γ—[1, a]$.
      2. Show that $$ ∫_0^∞ \frac{e^{-x}-e^{-a x}}{x} \mathrm{~d} x=\log a $$
      3. Is the function $g(x, y)=e^{-x y}-a e^{-a x y}$ integrable over $[0,1]Γ—[1,∞)$ ? Justify your answer.
    3. Let $f:[0,1] β†’ ℝ$ be measurable. Suppose that the function $$ g(x, y)=f(x)-f(y) $$ is integrable on $[0,1]Γ—[0,1]$. Must $f$ be integrable on $[0,1]$ ? Justify your answer.
      1. Define a simple function $Ο•:ℝ→[0,∞]$, and state an expression for the Lebesgue integral of $Ο•$.
      2. Let $f:ℝ→[0,∞]$ be measurable. Explain how to define its Lebesgue integral $∫_ℝf$.
      3. Let $f:ℝ→[-∞,∞]$ be measurable. What does it mean for $f$ to be Lebesgue integrable, and in that case define $∫_ℝf$.
      4. Suppose that $f,g:ℝ→[-∞,∞]$ are Lebesgue integrable with $f(x)β©½g(x)$ for all $x$. Show that $∫_ℝf⩽∫_ℝg$.
    1. Determine whether the following measurable functions are Lebesgue integrable over the specified set. Justify your answers.
      1. $f(x)=\frac{\cos x}{x}$ over $(1,∞)$.
      2. $g(x)=\frac{\cos(1/x)}{x}$ over $(0,1)$.
      3. $h(x)=\frac{\sin x}{e^x-1}$ over $(0,∞)$.
    2. Write $β„’^1(ℝ)=\{f:ℝ→ℝ:f\text{ is integrable}\}$ and define ${β€–fβ€–}_1=∫_ℝ{|f|}$ for $fβˆˆβ„’^1(ℝ)$
      1. Let $\left(f_n\right)_{n=1}^∞$ and $\left(g_n\right)_{n=1}^∞$ be sequences in $β„’^1(ℝ)$, and suppose that $f,g:ℝ→ℝ$ are such that $f_nβ†’f$ and $g_nβ†’g$ almost everywhere, and that $gβˆˆβ„’^1(ℝ)$. Suppose that $\left|f_n\right|β©½g_n$ for all $nβˆˆβ„•$ and $\left\|g_n\right\|_1β†’{β€–gβ€–}_1$. Show $fβˆˆβ„’^1(ℝ)$ and $∫_ℝf_nβ†’βˆ«_ℝf$.
      2. Show that $\left\|f_n-f\right\|_1β†’0$.

Solution

      1. $$ m^*(E)=\inf \left\{\sum_{n=1}^∞ m\left(I_n\right): I_n \text { are intervals and } E βŠ† ⋃_{n=1}^∞ I_n\right\}, $$ where $m\left(I_n\right)=b_n-a_n$ when $I_n$ has end points $a_n<b_n$. $E$ is Lebesgue measurable iff $$ m^*(A)=m^*(A ∩ E)+m^*(A βˆ– E) $$ for all $A βŠ‚ ℝ$.
      2. Let $Ο΅>0$ and for each $n$ find intervals $\left(I_{n, r}\right)$ such that $E_n βŠ‚ ⋃_{r=1}^∞ I_{n, r}$ and $$ \sum_{r=1}^∞ m\left(I_{n, r}\right)<m^*\left(E_n\right)+2^{-n} Ο΅ $$ Then $⋃_{n=1}^∞ E_n βŠ† ⋃_{n, r=1}^∞ I_{n, r}$ so that $$ m^*\left(⋃_{n=1}^∞ E_n\right) β©½ \sum_{r, n=1}^∞ m\left(I_{n, r}\right)<\sum_{n=1}^∞ m^*\left(E_n\right)+Ο΅ . $$ Since $Ο΅>0$ was arbitrary, $m^*\left(⋃_{n=1}^∞ E_n\right) β©½ \sum_{n=1}^∞ m^*\left(E_n\right)$.
      3. Set $A_n=F_n βˆ– F_{n+1}$ so that $A_n$ are disjoint and $⋃_{n=1}^∞ A_n=F_1 βˆ–$ $β‹‚_{n=1}^∞ F_n$. Then by countable additivity $$ m\left(F_1 βˆ– β‹‚_{n=1}^∞ F_n\right)=\sum_{n=1}^∞\left(m\left(F_n βˆ– F_{n+1}\right)\right) . $$Also (finite) addivity gives $m\left(F_1\right)=m\left(F_1 βˆ– β‹‚_{n=1}^∞ F_n\right)+m\left(β‹‚_{n=1}^∞ F_n\right)$ and $m\left(F_{n+1}\right)+$ $m\left(F_n βˆ– F_{n+1}\right)=m\left(F_n\right)$ So $$ \sum_{n=1}^∞\left(m\left(F_n\right)-m\left(F_{n+1}\right)\right)=m\left(F_1\right)-\lim _{nβ†’βˆž} m\left(F_n\right) $$ Since $m\left(F_1\right)<∞$, the result follows.
        This solution argues directly from countable additivity. I would expect many students to first prove the bookwork result $m\left(⋃_{n=1}^∞ E_n\right)=\lim m\left(E_n\right)$ when $E_1 βŠ† E_2 βŠ† …$ and then set $E_n=F_1 βˆ– F_n$.
      4. We note that $m\left(⋃_{n=1}^∞ E_n\right) β©½ \sum_n m\left(E_n\right)<∞$ (using (ii)). Hence we can use (iii) to obtain $$ m(E)=\lim _n m\left(⋃_{r β©Ύ n} E_r\right) β©½ \lim _n \sum_{r β©Ύ n} m\left(E_r\right)=0 $$
      1. Fix $n ∈ β„•$, and let $F_r=\left\{x ∈[0,1]:\left|f_n(x)\right|>r / n\right\}$. Since $F_1 βŠƒ F_2 βŠƒβ€¦$ and $β‹‚_r F_r=βˆ…$, there exists some $r$ with $m\left(F_r\right)<2^{-n}$ (by (a)(iii)). Take $a_n=r$.
      2. Let $E_n=\left\{x ∈[0,1]:\left|f_n(x)\right|>a_n / n\right\}$ so that $\sum_n m\left(E_n\right)<∞$. Therefore for $E=β‹‚_{n=1}^∞ ⋃_{m β©Ύ n} E_m$, part (a)(iv) gives $m(E)=0$. If $x βˆ‰ E$, then there exists $n$ such that $x βˆ‰ ⋃_{m β©Ύ n} E_m$, i.e. $$ \left|\frac{f_m(x)}{a_m}\right| β©½ \frac{1}{m} \text { for all } m β©Ύ n . $$ Therefore $f_m(x) / a_m β†’ 0$ as $m β†’βˆž$ for $x βˆ‰ E$.
        Sourced from Stein and Shakarchi chapter 1.
    1. Fubini: Let $f: ℝ^2 β†’ ℝ$ be integrable. Then, for almost all $y, x ↦ f(x, y)$ is integrable, and if $F(y)$ is defined (for those $y$) by $$ F(y)=∫_{ℝ} f(x, y) d x $$ then $F(y)$ is integrable and $$ ∫_{ℝ^2} f(x, y) d(x, y)=∫_{ℝ} F(y) d y $$ Similarly $$ ∫_{ℝ^2} f(x, y) d(x, y)=∫_{ℝ}\left(∫_{ℝ} f(x, y) d y\right) d x $$ Tonelli: Such a function is integrable on $ℝ^2$ if either of the repeated integrals $$ ∫_{ℝ}\left(∫_{ℝ}{|f(x, y)|}d x\right) d y \text { or } ∫_{ℝ}\left(∫_{ℝ}{|f(x, y)|}d y\right) d x $$ is finite (and hence Fubini's theorem applies to $|f|$ and $f$).
      1. Note $e^{-x y} β©Ύ 0$ on this range. For any $1 β©½ y β©½ a$, $$ ∫_0^∞ e^{-x y} d x=\lim _{n β†’βˆž} ∫_0^n e^{-x y} d x=\lim _{n β†’βˆž}\left(\frac{e^{-n y}}{y}-\frac{1}{y}\right)=\frac{1}{y} $$ using the monotone convergence theorem, and the fundamental theorem of calculus. Then $$ ∫_1^a ∫_0^∞ e^{-x y} d x d y=\log a $$ by the fundamental theorem of calculus. By Tonelli's theorem, $e^{-x y}$ is integrable on the specified domain.
        [Note that the calculation of the integral as $\log a$ really belongs to the next subpart.]
      2. By Tonelli's theorem $$ \log a=∫_0^∞ ∫_1^a e^{-x y} d y d x=∫_0^∞ \frac{e^{-x}-e^{-a x}}{x} d x . $$ where the second integral is calculated by the fundamental theorem of calculus.
      3. Firstly, for any $y ∈[1,∞)$ $$ ∫_0^1\left(e^{-x y}-a e^{-a x y}\right) d x=\frac{e^{-a y}-e^{-y}}{y} $$ by the FTC. So $$ ∫_1^∞ ∫_0^1\left(e^{-x y}-a e^{-a x y}\right) d x d y=∫_1^∞ \frac{e^{-a y}-e^{-y}}{y} d y $$ On the other hand, for $x ∈(0,1)$, \begin{aligned} ∫_1^∞\left(e^{-x y}-a e^{-a x y}\right) d y & =\lim _{n β†’βˆž} ∫_1^n\left(e^{-x y}-a e^{-a x y}\right) d y \\ & =\lim _{n β†’βˆž}\left(\frac{-e^{-n x}+e^{-a n x}}{x}-\frac{-e^{-x}+e^{-a x}}{x}\right) \\ & =\frac{e^{-x}-e^{-a x}}{x} \end{aligned} by the MCT (applied separately to each term), and the FTC. Thus $$ ∫_0^1 ∫_1^∞\left(e^{-x y}-a e^{-a x y}\right) d y d x=∫_0^1 \frac{e^{-x}-e^{-a x}}{x} d x $$ If $g(x, y)$ is integrable on the specified domain, then $$ ∫_0^1 \frac{e^{-x}-e^{-a x}}{x} d x=∫_1^∞ \frac{e^{-a y}-e^{-y}}{y} d y $$ by Fubini's theorem. Replacing $y$ by $x$ in the right hand integral, this gives $$ ∫_0^∞ \frac{e^{-x}-e^{-a x}}{x} d x=0 $$ contradicting the previous part. Thus $g$ is not integrable.
        This exercise is sourced from Priestley, where it's an omitted example.
    2. By Fubini, for almost all $y, x ↦{|f(x)-f(y)|}$ is integrable. Fix such a $y_0$ so $$ ∫_0^1\left|f(x)-f\left(y_0\right)\right| d x<∞ . $$ Since for all $x ∈[0,1]$, we have $$ {|f(x)|}β©½\left|f(x)-f\left(y_0\right)\right|+\left|f\left(y_0\right)\right|, $$comparison gives $∫^1_0 {|f (x)|} < ∞$. Therefore $f$ is integrable on $[0, 1]$.
      1. A simple function is a measurable function which takes only finitely many values. Such a function Ο• can be written in the form $Ο•=βˆ‘^n_{i=1}Ξ±_iΟ‡_{B_i}$ with $Ξ±_i>0$ and measureable sets $B_i$. Then $∫_ℝ Ο•=βˆ‘^n_{i=1}Ξ±_im(B_i)$.
      2. $∫_ℝf=\sup\left\{∫_ℝϕ:0β©½Ο•β©½f,Ο•\text { simple}\right\}$
      3. Let $f^{+}(x)=\max(f(x),0)$ and $f^{-}(x)=\max(-f(x),0). f$ is integrable iff $∫_ℝf^{+}<∞$ and $∫_ℝf^{-}<∞$. In this case we define $∫_ℝf=∫_ℝf^{+}-∫_ℝf^{-}$.
      4. Firstly assume that $0β©½fβ©½g$. If $Ο•:ℝ→[0,∞]$ is simple and $Ο•β©½f$, then $Ο•β©½g$. Therefore $\sup\{∫_ℝϕ:0β©½Ο•β©½f,Ο•\text{ simple}\}β©½\sup\{∫_ℝϕ:0β©½Ο•β©½g,Ο•\text{ simple}\}$,and so $$ ∫_ℝf⩽∫_ℝg . $$ Now in general, we have $0β©½f^{+}β©½g^{+}$ so $∫_ℝf^{+}⩽∫_ℝg^{+}$ and $0β©½g^{-}β©½f^{-}$ so $∫_ℝg^{-}⩽∫_ℝf^{-}$. Assembling this gives $∫_ℝf⩽∫_ℝg$.
      1. We have $$ ∫_{n Ο€}^{(n+1)Ο€}\left|\frac{\cos x}{x}\right|β©Ύ\frac{1}{(n+1)Ο€}∫_{n Ο€}^{(n+1)Ο€}{|\cos x|}=\frac{2}{(n+1)Ο€}. $$ Since $\sum_{n=1}^∞\frac{2}{(n+1)Ο€}=∞,f$ is not integrable over $[Ο€,∞)$, by the baby MCT (and so not integrable over $(1,∞)$ either).
      2. We substitute using the monotonic bijection $h:(0,1)β†’(1,∞)$, $h(x)=1/x$ which has continuous derivative $h'(x)=-x^{-2}$. Then as the $f$ from the previous subpart is not integrable on $(1,∞)$, it follows that $(f∘h)β‹…h'$ is not integrable on $(0,1)$. But $f(h(x))h'(x)=-\frac{\cos(1/x)}{x}=-g(x)$. Thus $g$ is not integrable.
        [We do similar substitutions on sheet 3.]
      3. For $xβ©Ύ1$, we have $\left|\frac{\sin x}{e^x-1}\right|β©½\frac{2}{e^x}$. We have $∫_1^n\frac{2}{e^x}=2\left(1-e^{-n}\right)β†’2$. Therefore by the baby MCT, and comparison $h$ is integrable on $[1,∞)$. Noting that $\lim _{xβ†’0}f(x)=1$ by L'Hopital, if we define $h(0)=1$, $h$ restricts to a continuous function on $[0,1]$, which is therefore bounded and integrable on this domain. Hence $h$ is integrable on $[0,∞)$.
      1. $f$ is an a.e. limit of measurable functions so measurable. As $\left|f_n\right|β©½g_n$, we have ${|f|}β©½g$ a.e. and hence $fβˆˆβ„’^1(ℝ)$. We have $g_nΒ±f_nβ©Ύ0$ and $g_nΒ±f_nβ†’gΒ±f$ a.e. Applying Fatou: $$ ∫(gΒ±f)β©½\liminf∫\left(g_nΒ±f_n\right) $$ As $g_nβ©Ύ0$, and $\left\|g_n\right\|_1β†’{β€–gβ€–}_1$, we have $∫ g_nβ†’βˆ« g$. Therefore [sum of liminf] $$ ±∫ fβ©½\liminf∫\left(Β±f_n\right) $$ i.e. $$ ∫ fβ©½\liminf∫ f_nβ©½\limsup∫ f_n⩽∫ f $$ Therefore $\lim∫ f_n=∫ f$.
        Potentially hard, but based on proof of the DCT so reworked bookwork in form too. This could be made easier by adding a hint to use Fatou
      2. We have $$ \left|f_n-f\right| β©½\left|f_n\right|+{|f|} β©½ g_n+{|f|} β†’ g+{|f|} $$ almost everywhere. As $g+{|f|}$ is integrable, and $\left\|g_n+{|f|}\right\|_1=∫\left(g_n+{|f|}\right) β†’βˆ«(g+{|f|})={\|g+{|f|}\|}_1$, we can apply the previous part to $\left|f_n-f\right| β†’ 0$ a.e. Therefore $$ \left\|f_n-f\right\|_1=\lim ∫\left|f_n-f\right|=0, $$ as required.