Integration 2022 Exam Original
- Let $m$ denote the Lebesgue measure on $β$.
-
Define the Lebesgue outer measure $m^*$ and what it means for $E β β$ to be Lebesgue measurable.
- Show that for any subsets $E_1, E_2, β¦$ of $β$,
$$
m^*\left(β_{n=1}^β E_n\right) β©½ \sum_{n=1}^β m^*\left(E_n\right)
$$
- Let $F_1 β F_2 β β―$ be Lebesgue measurable sets with $m\left(F_1\right)<β$. Use countable additivity to show that
$$
m\left(β_{n=1}^β F_n\right)=\lim _{n ββ} m\left(F_n\right) .
$$
- Let $\left(E_n\right)_{n=1}^β$ be a sequence of Lebesgue measurable sets with $\sum_{n=1}^β m\left(E_n\right)<β$ and set $E=β_{n=1}^β β_{r β©Ύ n} E_r$. Show that $m(E)=0$.
- Let $\left(f_n\right)_{n=1}^β$ be a sequence of measurable functions from $[0,1]$ to $β$.
- Show that for each $n β β$, there exists $a_n β β$ with
$$
m\left(\left\{x β[0,1]:\left|f_n(x)\right|>a_n / n\right\}\right)<2^{-n}
$$
- Deduce that for almost all $x β[0,1]$,
$$
\frac{f_n(x)}{a_n} β 0 β \text { as } n ββ
$$
- State Fubiniβs and Tonelliβs theorems for a measurable function $f:β^2ββ$
- Let $a>1$.
- Show that the function $f(x, y)=e^{-x y}$ is integrable on $[0,β)Γ[1, a]$.
- Show that
$$
β«_0^β \frac{e^{-x}-e^{-a x}}{x} \mathrm{~d} x=\log a
$$
- Is the function $g(x, y)=e^{-x y}-a e^{-a x y}$ integrable over $[0,1]Γ[1,β)$ ? Justify your answer.
- Let $f:[0,1] β β$ be measurable. Suppose that the function
$$
g(x, y)=f(x)-f(y)
$$
is integrable on $[0,1]Γ[0,1]$. Must $f$ be integrable on $[0,1]$ ? Justify your answer.
-
-
- Define a simple function $Ο:ββ[0,β]$, and state an expression for the Lebesgue integral of $Ο$.
- Let $f:ββ[0,β]$ be measurable. Explain how to define its Lebesgue integral $β«_βf$.
- Let $f:ββ[-β,β]$ be measurable. What does it mean for $f$ to be Lebesgue integrable, and in that case define $β«_βf$.
- Suppose that $f,g:ββ[-β,β]$ are Lebesgue integrable with $f(x)β©½g(x)$ for all $x$. Show that $β«_βfβ©½β«_βg$.
- Determine whether the following measurable functions are Lebesgue integrable over the specified set. Justify your answers.
- $f(x)=\frac{\cos x}{x}$ over $(1,β)$.
- $g(x)=\frac{\cos(1/x)}{x}$ over $(0,1)$.
- $h(x)=\frac{\sin x}{e^x-1}$ over $(0,β)$.
- Write $β^1(β)=\{f:βββ:f\text{ is integrable}\}$ and define ${βfβ}_1=β«_β{|f|}$ for $fββ^1(β)$
- Let $\left(f_n\right)_{n=1}^β$ and $\left(g_n\right)_{n=1}^β$ be sequences in $β^1(β)$, and suppose that $f,g:βββ$ are such that $f_nβf$ and $g_nβg$ almost everywhere, and that $gββ^1(β)$. Suppose that $\left|f_n\right|β©½g_n$ for all $nββ$ and $\left\|g_n\right\|_1β{βgβ}_1$. Show $fββ^1(β)$ and $β«_βf_nββ«_βf$.
- Show that $\left\|f_n-f\right\|_1β0$.
Solution
-
$$
m^*(E)=\inf \left\{\sum_{n=1}^β m\left(I_n\right): I_n \text { are intervals and } E β β_{n=1}^β I_n\right\},
$$
where $m\left(I_n\right)=b_n-a_n$ when $I_n$ has end points $a_n<b_n$. $E$ is Lebesgue measurable iff
$$
m^*(A)=m^*(A β© E)+m^*(A β E)
$$
for all $A β β$.
- Let $Ο΅>0$ and for each $n$ find intervals $\left(I_{n, r}\right)$ such that $E_n β β_{r=1}^β I_{n, r}$ and
$$
\sum_{r=1}^β m\left(I_{n, r}\right)<m^*\left(E_n\right)+2^{-n} Ο΅
$$
Then $β_{n=1}^β E_n β β_{n, r=1}^β I_{n, r}$ so that
$$
m^*\left(β_{n=1}^β E_n\right) β©½ \sum_{r, n=1}^β m\left(I_{n, r}\right)<\sum_{n=1}^β m^*\left(E_n\right)+Ο΅ .
$$
Since $Ο΅>0$ was arbitrary, $m^*\left(β_{n=1}^β E_n\right) β©½ \sum_{n=1}^β m^*\left(E_n\right)$.
- Set $A_n=F_n β F_{n+1}$ so that $A_n$ are disjoint and $β_{n=1}^β A_n=F_1 β$ $β_{n=1}^β F_n$. Then by countable additivity
$$
m\left(F_1 β β_{n=1}^β F_n\right)=\sum_{n=1}^β\left(m\left(F_n β F_{n+1}\right)\right) .
$$Also (finite) addivity gives $m\left(F_1\right)=m\left(F_1 β β_{n=1}^β F_n\right)+m\left(β_{n=1}^β F_n\right)$ and $m\left(F_{n+1}\right)+$ $m\left(F_n β F_{n+1}\right)=m\left(F_n\right)$ So
$$
\sum_{n=1}^β\left(m\left(F_n\right)-m\left(F_{n+1}\right)\right)=m\left(F_1\right)-\lim _{nββ} m\left(F_n\right)
$$
Since $m\left(F_1\right)<β$, the result follows.
This solution argues directly from countable additivity. I would expect many students to first prove the bookwork result $m\left(β_{n=1}^β E_n\right)=\lim m\left(E_n\right)$ when $E_1 β E_2 β β¦$ and then set $E_n=F_1 β F_n$.
- We note that $m\left(β_{n=1}^β E_n\right) β©½ \sum_n m\left(E_n\right)<β$ (using (ii)). Hence we can use (iii) to obtain
$$
m(E)=\lim _n m\left(β_{r β©Ύ n} E_r\right) β©½ \lim _n \sum_{r β©Ύ n} m\left(E_r\right)=0
$$
- Fix $n β β$, and let $F_r=\left\{x β[0,1]:\left|f_n(x)\right|>r / n\right\}$. Since $F_1 β F_2 ββ¦$ and $β_r F_r=β
$, there exists some $r$ with $m\left(F_r\right)<2^{-n}$ (by (a)(iii)). Take $a_n=r$.
- Let $E_n=\left\{x β[0,1]:\left|f_n(x)\right|>a_n / n\right\}$ so that $\sum_n m\left(E_n\right)<β$. Therefore for $E=β_{n=1}^β β_{m β©Ύ n} E_m$, part (a)(iv) gives $m(E)=0$. If $x β E$, then there exists $n$ such that $x β β_{m β©Ύ n} E_m$, i.e.
$$
\left|\frac{f_m(x)}{a_m}\right| β©½ \frac{1}{m} \text { for all } m β©Ύ n .
$$
Therefore $f_m(x) / a_m β 0$ as $m ββ$ for $x β E$.
Sourced from Stein and Shakarchi chapter 1.
- Fubini: Let $f: β^2 β β$ be integrable. Then, for almost all $y, x β¦ f(x, y)$ is integrable, and if $F(y)$ is defined (for those $y$) by
$$
F(y)=β«_{β} f(x, y) d x
$$
then $F(y)$ is integrable and
$$
β«_{β^2} f(x, y) d(x, y)=β«_{β} F(y) d y
$$
Similarly
$$
β«_{β^2} f(x, y) d(x, y)=β«_{β}\left(β«_{β} f(x, y) d y\right) d x
$$
Tonelli: Such a function is integrable on $β^2$ if either of the repeated integrals
$$
β«_{β}\left(β«_{β}{|f(x, y)|}d x\right) d y \text { or } β«_{β}\left(β«_{β}{|f(x, y)|}d y\right) d x
$$
is finite (and hence Fubini's theorem applies to $|f|$ and $f$).
- Note $e^{-x y} β©Ύ 0$ on this range. For any $1 β©½ y β©½ a$,
$$
β«_0^β e^{-x y} d x=\lim _{n ββ} β«_0^n e^{-x y} d x=\lim _{n ββ}\left(\frac{e^{-n y}}{y}-\frac{1}{y}\right)=\frac{1}{y}
$$
using the monotone convergence theorem, and the fundamental theorem of calculus. Then
$$
β«_1^a β«_0^β e^{-x y} d x d y=\log a
$$
by the fundamental theorem of calculus. By Tonelli's theorem, $e^{-x y}$ is integrable on the specified domain.
[Note that the calculation of the integral as $\log a$ really belongs to the next subpart.]
- By Tonelli's theorem
$$
\log a=β«_0^β β«_1^a e^{-x y} d y d x=β«_0^β \frac{e^{-x}-e^{-a x}}{x} d x .
$$
where the second integral is calculated by the fundamental theorem of calculus.
- Firstly, for any $y β[1,β)$
$$
β«_0^1\left(e^{-x y}-a e^{-a x y}\right) d x=\frac{e^{-a y}-e^{-y}}{y}
$$
by the FTC. So
$$
β«_1^β β«_0^1\left(e^{-x y}-a e^{-a x y}\right) d x d y=β«_1^β \frac{e^{-a y}-e^{-y}}{y} d y
$$
On the other hand, for $x β(0,1)$,
\begin{aligned}
β«_1^β\left(e^{-x y}-a e^{-a x y}\right) d y & =\lim _{n ββ} β«_1^n\left(e^{-x y}-a e^{-a x y}\right) d y \\
& =\lim _{n ββ}\left(\frac{-e^{-n x}+e^{-a n x}}{x}-\frac{-e^{-x}+e^{-a x}}{x}\right) \\
& =\frac{e^{-x}-e^{-a x}}{x}
\end{aligned}
by the MCT (applied separately to each term), and the FTC. Thus
$$
β«_0^1 β«_1^β\left(e^{-x y}-a e^{-a x y}\right) d y d x=β«_0^1 \frac{e^{-x}-e^{-a x}}{x} d x
$$
If $g(x, y)$ is integrable on the specified domain, then
$$
β«_0^1 \frac{e^{-x}-e^{-a x}}{x} d x=β«_1^β \frac{e^{-a y}-e^{-y}}{y} d y
$$
by Fubini's theorem. Replacing $y$ by $x$ in the right hand integral, this gives
$$
β«_0^β \frac{e^{-x}-e^{-a x}}{x} d x=0
$$
contradicting the previous part. Thus $g$ is not integrable.
This exercise is sourced from Priestley, where it's an omitted example.
- By Fubini, for almost all $y, x β¦{|f(x)-f(y)|}$ is integrable. Fix such a $y_0$ so
$$
β«_0^1\left|f(x)-f\left(y_0\right)\right| d x<β .
$$
Since for all $x β[0,1]$, we have
$$
{|f(x)|}β©½\left|f(x)-f\left(y_0\right)\right|+\left|f\left(y_0\right)\right|,
$$comparison gives $β«^1_0 {|f (x)|} < β$. Therefore $f$ is integrable on $[0, 1]$.
-
- A simple function is a measurable function which takes only finitely many values. Such a function Ο can be written in the form $Ο=β^n_{i=1}Ξ±_iΟ_{B_i}$ with $Ξ±_i>0$ and measureable sets $B_i$. Then $β«_β Ο=β^n_{i=1}Ξ±_im(B_i)$.
- $β«_βf=\sup\left\{β«_βΟ:0β©½Οβ©½f,Ο\text { simple}\right\}$
- Let $f^{+}(x)=\max(f(x),0)$ and $f^{-}(x)=\max(-f(x),0). f$ is integrable iff $β«_βf^{+}<β$ and $β«_βf^{-}<β$. In this case we define $β«_βf=β«_βf^{+}-β«_βf^{-}$.
- Firstly assume that $0β©½fβ©½g$. If $Ο:ββ[0,β]$ is simple and $Οβ©½f$, then $Οβ©½g$. Therefore $\sup\{β«_βΟ:0β©½Οβ©½f,Ο\text{ simple}\}β©½\sup\{β«_βΟ:0β©½Οβ©½g,Ο\text{ simple}\}$,and so
$$
β«_βfβ©½β«_βg .
$$
Now in general, we have $0β©½f^{+}β©½g^{+}$ so $β«_βf^{+}β©½β«_βg^{+}$ and $0β©½g^{-}β©½f^{-}$ so $β«_βg^{-}β©½β«_βf^{-}$. Assembling this gives $β«_βfβ©½β«_βg$.
- We have
$$
β«_{n Ο}^{(n+1)Ο}\left|\frac{\cos x}{x}\right|β©Ύ\frac{1}{(n+1)Ο}β«_{n Ο}^{(n+1)Ο}{|\cos x|}=\frac{2}{(n+1)Ο}.
$$
Since $\sum_{n=1}^β\frac{2}{(n+1)Ο}=β,f$ is not integrable over $[Ο,β)$, by the baby MCT (and so not integrable over $(1,β)$ either).
- We substitute using the monotonic bijection $h:(0,1)β(1,β)$, $h(x)=1/x$ which has continuous derivative $h'(x)=-x^{-2}$. Then as the $f$ from the previous subpart is not integrable on $(1,β)$, it follows that $(fβh)β
h'$ is not integrable on $(0,1)$. But $f(h(x))h'(x)=-\frac{\cos(1/x)}{x}=-g(x)$. Thus $g$ is not integrable.
[We do similar substitutions on sheet 3.]
- For $xβ©Ύ1$, we have $\left|\frac{\sin x}{e^x-1}\right|β©½\frac{2}{e^x}$. We have $β«_1^n\frac{2}{e^x}=2\left(1-e^{-n}\right)β2$. Therefore by the baby MCT, and comparison $h$ is integrable on $[1,β)$. Noting that $\lim _{xβ0}f(x)=1$ by L'Hopital, if we define $h(0)=1$, $h$ restricts to a continuous function on $[0,1]$, which is therefore bounded and integrable on this domain. Hence $h$ is integrable on $[0,β)$.
- $f$ is an a.e. limit of measurable functions so measurable. As $\left|f_n\right|β©½g_n$, we have ${|f|}β©½g$ a.e. and hence $fββ^1(β)$.
We have $g_nΒ±f_nβ©Ύ0$ and $g_nΒ±f_nβgΒ±f$ a.e. Applying Fatou:
$$
β«(gΒ±f)β©½\liminfβ«\left(g_nΒ±f_n\right)
$$
As $g_nβ©Ύ0$, and $\left\|g_n\right\|_1β{βgβ}_1$, we have $β« g_nββ« g$. Therefore [sum of liminf]
$$
Β±β« fβ©½\liminfβ«\left(Β±f_n\right)
$$
i.e.
$$
β« fβ©½\liminfβ« f_nβ©½\limsupβ« f_nβ©½β« f
$$
Therefore $\limβ« f_n=β« f$.
Potentially hard, but based on proof of the DCT so reworked bookwork in
form too. This could be made easier by adding a hint to use Fatou
- We have
$$
\left|f_n-f\right| β©½\left|f_n\right|+{|f|} β©½ g_n+{|f|} β g+{|f|}
$$
almost everywhere. As $g+{|f|}$ is integrable, and $\left\|g_n+{|f|}\right\|_1=β«\left(g_n+{|f|}\right) ββ«(g+{|f|})={\|g+{|f|}\|}_1$, we can apply the previous part to $\left|f_n-f\right| β 0$ a.e. Therefore
$$
\left\|f_n-f\right\|_1=\lim β«\left|f_n-f\right|=0,
$$
as required.