- Throughout this question assume that measurable subsets of $ā$, the (Lebesgue) measure of such sets, and measurable functions have been defined.
- What does it mean to say that a function $Ļ: ā ā[0, ā)$ is a simple function? How is the integral $ā«_ā Ļ(x) \mathrm{~d}x$ of a simple function defined?
Let $f: ā ā[0, ā]$ be a measurable function. How is the integral $ā«_ā f(x) \mathrm{~d} x$ defined?
Let $g: ā ā ā$ be a measurable function. What does it mean to say that $g$ is integrable over $ā$ ? How is the integral $ā«_ā g(x) \mathrm{~d}x$ defined? - Show that each of the following functions $f(x)$ is integrable over ā:
- $\mathrm{e}^{-|x|}$,
- $\mathrm{e}^{-x^2}$,
- $\mathrm{e}^{-x^2} \cos x$
- $\mathrm{e}^{-|x|}|x|^{-1 / 2}$
- You are given that $ā«_ā \mathrm{e}^{-x^2} \mathrm{~d} x=\sqrt{Ļ}$. Find the values of
- $ā«_ā \mathrm{e}^{-|x|}|x|^{-1 / 2} \mathrm{~d} x$
- $ā«_ā \mathrm{e}^{-x^2} \cos x \mathrm{~d} x$.
[In parts (b) and (c), you may use standard properties of the Lebesgue integral, provided that you state them clearly.]
- What does it mean to say that a function $Ļ: ā ā[0, ā)$ is a simple function? How is the integral $ā«_ā Ļ(x) \mathrm{~d}x$ of a simple function defined?
-
- State the Dominated Convergence Theorem and Fubini's Theorem.
- Define $f:(0, ā) Ć[0, ā) ā ā$ by $$ f(x, y)=\frac{(\sin \sqrt{x y})^2}{x^2+y} $$ Let $y ā©¾ 0$. Show that the function $x ā¦ f(x, y)$ is integrable over $(0, ā)$. [You may use standard inequalities for the sine function.]
- Let $f$ be as in part (b), and define $F:[0, ā) ā ā$ by
$$
F(y)=ā«_0^ā f(x, y) \mathrm{~d} x
$$
- Show that $F$ is continuous on $[0, ā)$.
- Show that $F$ is not integrable over $[0, ā)$.
- Does the right-hand derivative of $F$ exist at $y=0$ ? You should justify your answer. [Substitutions of the form $t=x y$ may be helpful.]
- Let $I$ either be an interval in $ā$ or $I=ā^2$. For $1 ā©½ p<ā$, let $ā^p(I)$ be the vector space of all measurable functions $f: I ā ā$ such that $|f|^p$ is integrable over $I$.
- Show that $ā^2(0,1) ā ā^1(0,1)$.
By giving examples of suitable functions (justification is not required), show that
- $ā^2(ā)āā^1(ā)$
- $ā^1(ā) ā ā^2(ā)$
- State Minkowski's inequality. Explain how the normed spaces $\left(L^p(I),\|ā \|_{L^p(I)}\right)$ are defined, and how Minkowski's inequality is involved. [Detailed justifications are not required.] Show that the norm on $L^2(I)$ is associated with an inner product $āØā , ā ā©_{L^2(I)}$ which you should define.
- In this part we identify functions in $ā^2(I)$ with the corresponding elements of $L^2(I)$. Thus we may write $\|f\|_{L^2(I)}$ and $\left\langle f_1, f_2\right\rangle_{L^2(I)}$ for $f, f_1, f_2 ā ā^2(I)$.
Let $k ā ā^2\left(ā^2\right)$ satisfy $k(y, x)=k(x, y)$ for all $x, y ā ā$, and define $k_{x}(y)=k(x, y)$. Let $f ā ā^2(ā)$, and define
$$
g(x)=ā«_ā k(x, y) f(y) \mathrm{~d} y
$$
whenever this integral exists. Show that
- $\|k\|_{L^2\left(ā^2\right)}^2=ā«_ā\left\|k_{x}\right\|_{L^2(ā)}^2 \mathrm{~d} x$
- For almost all $x, g(x)$ is defined and $|g(x)| ā©½\|f\|_{L^2(ā)}\left\|k_{x}\right\|_{L^2(ā)}$,
- There exists $T f ā ā^2(ā)$ such that $T f=g$ a.e., and $\|T f\|_{L^2(ā)} ā©½\|f\|_{L^2(ā)}\|k\|_{L^2\left(ā^2\right)}$
- $\left\langle T f_1, f_2\right\rangle_{L^2(ā)}=\left\langle f_1, T f_2\right\rangle_{L^2(ā)}$ for all $f_1, f_2 ā ā^2(ā)$.
[You may use standard results about inner products and Lebesgue integration without proof.]
- Show that $ā^2(0,1) ā ā^1(0,1)$.
By giving examples of suitable functions (justification is not required), show that
Solutions
-
- $Ļ$ is a simple function if it is measurable and takes only finitely many values.
Equivalently, $Ļ=\sum_{i=1}^{k} Ī±_{i} Ļ_{B_{i}}$ where $B_{i}$ are measurable. Then $ā«_ā Ļ=\sum_{i=1}^{k} Ī±_{i} m\left(Ļ_{B_{i}}\right)$. $$ ā«_ā f(x) \mathrm{~d} x=\sup \left\{ā«_ā Ļ: Ļ \text { simple, } 0 ā©½ Ļ ā©½ f\right\} . $$ [Note: The supremum may be $ā$.]
$g$ is integrable if $ā«_ā g^+$ and $ā«_ā g^-$ are both finite, and then $ā«_ā g=ā«_ā g^+-ā«_ā g^-$. - All functions are continuous on $āā\{0\}$, hence measurable.
- By the FTC on $[-n, 0]$ and $[0, n], ā«_{-n}^n e^{-|x|} \mathrm{d} x=2\left(1-e^{-n}\right) ā 2$ as $n ā ā$. By (Baby) MCT, $e^{-|x|}$ is integrable over $ā$.
- $0 ā©½ e^{-x^2} ā©½ C e^{-|x|}$, so $e^{-x^2}$ is integrable by comparison. [Note: $C ā©¾ e^{1 / 4}$ ]
- $\left|e^{-x^2} \cos x\right| ā©½ e^{-x^2}$, so $e^{-x^2} \cos x$ is integrable by comparison.
- By the Substitution Theorem with $y=x^{1 / 2}, e^{-x} x^{-1 / 2}$ is integrable over $(0, ā)$ if and only if $2 e^{-y^2}$ is integrable over $(0, ā)$, which is true by (i). Similarly over $(-ā, 0)$. [Alternatively, for $|x| ā©¾ 1, e^{-|x|}|x|^{-1 / 2} ā©½ e^{-|x|}$; by (i) and comparison, the function is integrable over the region $|x| ā©¾ 1$. Using FTC, $$ ā«_{n^{-1} ā©½|x| ā©½ 1} e^{-|x|}|x|^{-1 / 2} \mathrm{~d} xā¤ā«_{n^{-1} ā©½|x| ā©½ 1}|x|^{-1 / 2} \mathrm{~d} x=4\left(1-n^{-1 / 2}\right) ā 4 $$ so the function is integrable over $[-1,1]$ by Baby MCT.]
Standard facts used above
Any function which is continuous a.e. is measurable.
Baby MCT: If $f$ is measurable on $ā, f ā©¾ 0$ and $\sup _n ā«_{I_n} f$ is finite for an increasing sequence of measurable sets $I_n$ with union $I$, then $f$ is integrable over $I$.
Comparison: If $g$ is integrable, $f$ is measurable and $|f| ā©½ g$, then $f$ is integrable. Substitution: Let $g: I ā ā$ be a monotonic function with a continuous derivative on an interval $I$, and let $J$ be the interval $g(I)$. A (measurable) function $f: J ā ā$ is integrable over $J$ if and only if $(f ā g) ā g'$ is integrable over $I$. Then $ā«_{J} f(x) d x=ā«_{I} f(g(y))\left|g'(y)\right| d y$.
FTC is a theorem of Riemann (or even simpler) integration in Prelims, so candidates are not required to state it. Similarly they are not required to state the Substitution Theorem for continuous $f$ on closed bounded intervals, but they should state the version above if they use it in other contexts. - Substitute $x=y^2$$$ā«_0^ā \mathrm{e}^{-|x|}|x|^{-1 / 2} \mathrm{~d} x=2 ā«_0^ā e^{-y^2} \mathrm{~d} y=\sqrt{Ļ}$$
- $$ ā«_ā e^{-x^2} \cos x \mathrm{~d} x=ā«_ā e^{-x^2} \frac{e^{i x}+e^{-i x}}2 \mathrm{~d} x=\frac{e^{-1 / 4}}2 ā«_ā\left(e^{-\left(x-\frac{i}2\right)^2}+e^{-\left(x+\frac{i}2\right)^2}\right) \mathrm{~d} x . $$ Now we borrow from A2 (reminder given in A4) the fact that $ā«_ā e^{-(x-i b)^2} \mathrm{~d} x=ā«_ā e^{-x^2} \mathrm{~d} x$ and we conclude that $ā«_ā e^{-x^2} \cos x \mathrm{~d} x=e^{-1 / 4} \sqrt{Ļ}$. There are alternative methods for (c)(ii). If they use integration by parts for $C^1$-functions on closed bounded intervals, there is no need to state it. If they use it on infinite intervals without justifying it, they may lose one mark.
- $Ļ$ is a simple function if it is measurable and takes only finitely many values.
-
- DCT: Let $\left(f_n\right)$ be a sequence of integrable functions such that:
- $\left(f_n(x)\right)$ converges a.e. to a limit $f(x)$, and
- there is an integrable function $g$ such that, for each $n,\left|f_n(x)\right| ā©½ g(x)$ a.e.
Fubini: Let $f: ā^2 ā ā$ be integrable. Then, for almost all $y$, the function $x ā¦ f(x, y)$ is integrable. Moreover, if $F(y)$ is defined (for almost all $y$ ) by $F(y)=ā« f(x, y) d x$, then $F$ is integrable, and $$ ā«_{ā^2} f(x, y) d(x, y)=ā«_ā\left(ā«_ā f(x, y) d x\right) d y $$ - Note that $f$ is continuous, so $f(ā , y)$ is continuous, hence measurable. Moreover $$ 0 ā©½ f(x, y) ā©½ \frac1{x^2+y} ā©½ \min \left(x^{-2}, y^{-1}\right) $$ Fix $y>0$. The constant $y^{-1}$ is integrable w.r.t. $x$ over $(0,1)$, and $x^{-2}$ is integrable over $(1, ā)($ by Baby MCT). By comparison, the function $x ā¦ f(x, y)$ is integrable over $(0,1)$ and $(1, ā)$, hence over $(0, ā)$. For $y=0, f(x, 0)=0$ which is integrable.
-
- Fix $y ā[0, ā)$. The inequality $|\sin t| ā©½|t|$ gives $$ 0 ā©½ f(x, y) ā©½ \frac{x y}{x^2+y} ā©½ x $$ Let $\left(y_n\right)$ be a sequence in $(0, ā)$ converging to $y$, and let $g_n(x)=f\left(x, y_n\right)$. Then $g_n(x) ā f(x, y)$ by continuity of $f$. From (1) and (2) we obtain $0 ā©½ g_n(x) ā©½ \min \left(x^{-2}, x\right)$ which is integrable. By DCT $$ F\left(y_n\right)=ā«_0^ā g_n(x) \mathrm{d} x ā ā«_0^ā f(x, y) \mathrm{d} x=F(y) $$ It follows (from Prelims real analysis) that $F$ is continuous at $y$. So $F$ is continuous on $[0, ā)$.
- Let $x>0$. By putting $t=x y$ and then $u=\sqrt{t}$, $$ \begin{array}{r} ā«_0^ā f(x, y) \mathrm{d} y=ā«_0^ā \frac{(\sin \sqrt{t})^2}{x^2+(t / x)} \frac{\mathrm{d} t}{x}=ā«_0^ā \frac{(\sin u)^2}{x^{3}+u^2} 2 u \mathrm{~d} u ā©¾ \sum_{n=1}^ā ā«_{\left(n+\frac1{4}\right) Ļ}^{\left(n+\frac{3}{4}\right) Ļ} \frac{2 u(\sin u)^2}{x^2+u^2} \mathrm{~d} u \\ ā©¾ \sum_{n=1}^ā ā«_{\left(n+\frac1{4}\right) Ļ}^{\left(n+\frac{3}{4}\right) Ļ} \frac{n Ļ}{x^{3}+(n+1)^2 Ļ^2} \mathrm{~d} u=\sum_{n=1}^ā \frac{n Ļ}{2\left(x^{3}+(n+1)^2 Ļ^2\right)}=ā \end{array} $$ By the contrapositive of Tonelli/Fubini, $F$ is not integrable over $(0, ā)$.
- Clearly $F(0)=0$. For $y>0$, using the substitution $t=y x$ with $y$ fixed, then letting $y ā 0+$ using MCT, and then using Jordan's inequality, $$ \frac{F(y)-F(0)}{y}=ā«_0^ā \frac1{y} \frac{(\sin \sqrt{t})^2}{(t / y)^2+y} \frac{\mathrm{d} t}{y}=ā«_0^ā \frac{(\sin \sqrt{t})^2}{t^2+y^{3}} \mathrm{~d} t ā ā«_0^ā \frac{(\sin \sqrt{t})^2}{t^2} \mathrm{~d} t ā©¾ ā«_0^1 \frac{4}{Ļ^2 t} \mathrm{~d} t=ā $$ So the right-hand derivative does not exist.
- DCT: Let $\left(f_n\right)$ be a sequence of integrable functions such that:
-
- For any real number $y,|y| ā©½ 1+|y|^2$. Hence if $f ā ā^2(0,1),|f| ā©½ 1+|f|^2$ and $f$ is measurable. Since $1,|f| ā ā^2(0,1)$, it follows by comparison that $|f|$ is integrable, and hence $f$ is integrable.
- Let $f(x)=\left\{\begin{array}{ll}x^{-1} & (x>1) \\ 0 & (x<1)\end{array}\right.$. Then $f ā ā^2(ā), f ā ā^1(ā)$.
- Let $g(x)=\left\{\begin{array}{ll}x^{-1 / 2} & (0<x<1) \\ 0 & \text { otherwise }\end{array}\right.$. Then $g ā ā^1(ā), g ā ā^2(ā)$.
- Minkowski: For measurable functions $f$ and $g$, $$ \left(ā«|f+g|^p\right)^{1 / p} ā©½\left(ā«|f|^p\right)^{1 / p}+\left(ā«|f|^p\right)^{1 / p} $$ Define $\|f\|_{ā^p(I)}=\left(ā«_{I}|f|^p\right)^{1 / p}$. Minkowski says that $\|ā \|_{ā^p(I)}$ satisfies the triangle inequality. It is trivial that $\|Ī» f\|_{ā^p(I)}=|Ī»|\|f\|_{ā^p(I)}$. However it is not a norm. Let $š©$ be the set of all measurable functions $f$ such that $f=0$ a.e. This is a subspace of $ā^p(I)$. Let $L^p(I)=ā^p(I) / š©$ as a quotient vector space. There is a well-defined norm on $L^p(I)$ given by $\|[f]\|_{L^p(I)}=\|f\|_{ā^p(I)}$, where $[f]=f+š©$. Define $āØf, gā©=ā« f g$ for $f, g ā ā^2(I)$. This integral exists because $|f g| ā©½ \frac12\left(|f|^2+|g|^2\right)$. Moreover $āØf, fā©=\|f\|_2^2$
-
- By Fubini [for non-negative functions, or via Tonelli] $$ \|k\|_{L^2\left(ā^2\right)}^2=ā«_{ā^2}\left|k_{x}(y)\right|^2 \mathrm{~d}(x, y)=ā«_ā ā«_ā\left|k_{x}(y)\right|^2 \mathrm{~d} y \mathrm{~d} x=ā«_ā\left\|k_{x}\right\|_{L^2(ā)}^2 \mathrm{~d} x. $$
- From (i) it follows that for almost all $x, k_{x} ā L^2(ā)$. Then $g(x)=\left\langle f, k_{x}\right\rangle_{L^2(ā)}$ is defined. By Cauchy-Schwarz, $|g(x)| ā©½\|f\|_{L^2(ā)}\left\|k_{x}\right\|_{L^2(ā)}$.
- Let $T f$ be the function $g$ extended by 0 if $g(x)$ is not defined. It follows from (i) that $x ā¦\left\|k_{x}\right\|_{L^2(ā)}^2$ is integrable. Using (ii) and comparison, $|g|^2$ is integrable, so $T f ā ā^2(ā)$ and $$ ā«_ā|(T f)(x)|^2 \mathrm{~d} x ā©½\|f\|_{L^2(ā)}^2 ā«_ā\left\|k_{x}\right\|_{L^2(ā)}^2 \mathrm{~d} x=\|f\|_{L^2(ā)}^2\|k\|_{L^2\left(ā^2\right)}^2, $$ by (i)
- By Fubini and symmetry of $k$, $$ \left\langle T f_1, f_2\right\rangle_{L^2(ā)}=ā«_ā ā«_ā k(x, y) f_1(y) f_2(x) \mathrm{d} y \mathrm{~d} x=ā«_ā ā«_ā k(y, x) f_1(y) f_2(x) \mathrm{d} x \mathrm{~d} y=\left\langle f_1, T f_2\right\rangle_{L^2(ā)} . $$ The application of Fubini is justified by Tonelli, since the repeated integrals with $k, f_1, f_2$ replaced by $|k|,\left|f_1\right|,\left|f_2\right|$ are finite.
- For any real number $y,|y| ā©½ 1+|y|^2$. Hence if $f ā ā^2(0,1),|f| ā©½ 1+|f|^2$ and $f$ is measurable. Since $1,|f| ā ā^2(0,1)$, it follows by comparison that $|f|$ is integrable, and hence $f$ is integrable.
PREVIOUSIntegration 2015 Exam