Integration 2015 Exam

 
  1. What does it mean that $(Ξ©, β„±)$ is a measurable space, and what does it mean that $ΞΌ$ is a measure on $(Ξ©, β„±)$ ? Let $ΞΌ$ be a measure on a measurable space $(Ξ©, β„±)$ (so that $(Ξ©, β„±, ΞΌ)$ is a measure space).
    Let $E ∈ β„±$. Define $β„±_E=\{A: A βŠ† E$ and $A ∈ β„±\}$ and define $Ξ½(A)=ΞΌ(A)$ for every $A ∈ β„±_E$. Show that $β„±_E$ is a $Οƒ$-algebra and $Ξ½$ is a measure on $\left(E, β„±_E\right)$.
  2. Let $(Ξ©, β„±, ΞΌ)$ be a measure space. Suppose $A_n, B_n ∈ β„±$, where $A_n βŠ† A_{n+1}$ and $B_n βŠ‡ B_{n+1}$ for $n=1,2, β‹―$, and suppose $ΞΌ\left(B_1\right)<∞$. Show that $$ ΞΌ\left(⋃_{n=1}^∞ A_n\right)=\lim _{nβ†’βˆž} ΞΌ\left(A_n\right) $$ and that $$ ΞΌ\left(β‹‚_{n=1}^∞ B_n\right)=\lim _{nβ†’βˆž} ΞΌ\left(B_n\right) . $$
  3. Let $\left(ℝ, β„³_{\text{Leb }}, m\right)$ be the Lebesgue measure space, and let $E ∈ β„³_{\text{Leb }}$ be such that $0<m(E)<∞$. Show that the function defined so that $h(x)=m(E ∩(-∞, x])$ for $x ∈ ℝ$ is uniformly continuous on ℝ, and show that for every $c ∈(0, m(E))$ there is a Lebesgue measurable subset $A βŠ† E$ such that $m(A)=c$.
    1. Let $$ f(x)=\frac{\sin x}{x^q} $$ for $x>0$, where $q>0$ is a constant. Show that $f$ is Lebesgue integrable on $(0,1]$ if $q<2$, and $f$ is not Lebesgue integrable on $[1, ∞)$ for $0<q ⩽ 1$.
    2. Let $y ∈ ℝ$, and let $$ h_y(x)=e^{-x} \frac{\sin (x y)}{x \sqrt{x}} $$ for $x>0$. Show that $h_y$ is Lebesgue integrable on $(0, ∞)$ for every $y β©Ύ 0$.
      Let $$ F(y)=∫_0^∞ h_y(x) \mathrm{d} x $$ for $y ⩾ 0$. Show that $F$ is continuous on $[0, ∞)$, differentiable on $(0, ∞)$, and $$ F'(y)=∫_0^∞ e^{-x} \frac{\cos (x y)}{\sqrt{x}} \mathrm{~d} x $$ for $y>0$.
    3. For $x>0$, let $$ f_n(x)=\frac{\ln(x+n)}n \frac{\sin x}{x^q} $$ where $q$ is a constant such that $1<q<2$. Show that $$ \lim _{nβ†’βˆž} ∫_0^∞ f_n(x) \mathrm{d} x=0 $$ [You may use any convergence theorems covered in the lectures, as long as you state them clearly.]
    1. Consider the function $$ f(x, y)=\frac{x y}{\left(x^2+y^2\right)^3} $$ for $(x, y) β‰ (0,0)$ and $f(0,0)=0$. Show that $$ ∫_{-1}^1\left(∫_{-1}^1 f(x, y) \mathrm{d} x\right) \mathrm{d} y=∫_{-1}^1\left(∫_{-1}^1 f(x, y) \mathrm{d} y\right) \mathrm{d} x=0 $$ and show that $f$ is not Lebesgue integrable on $[-1,1] Γ—[-1,1]$.
    2. Consider the two variable function $f(x, y)$ defined so that $$ f(x, y)=\frac{\sin (x-y)}{|x-y|^{3 / 2}} g(y) $$ for $x β‰  y$, and $f(x, x)=0$, where $g$ is Lebesgue integrable in $ℝ$. Show that $f$ is Lebesgue integrable on $ℝ^2$, and $$ \left|∫_{ℝ^2} f(x, y) \mathrm{d} x \mathrm{~d} y\right| β©½ 8 ∫_{-∞}^∞|g(y)| \mathrm{d} y $$ [You may use Fubini's theorem and Tonelli's theorem without proof, as long as you state them clearly.]
  • Solution

      1. $(Ξ©, β„±)$ is called a measurable space if $β„±$ is a $Οƒ$-algebra of some subsets of $Ξ©$, here $β„±$ is a $Οƒ$-algebra on $Ξ©$ if $Ξ©$ and empty set $βˆ…$ belong to $β„±$, if $A ∈ β„±$ then so does $A^c$, and if $A_n ∈ β„±$ (where $n=1,2, β‹―$) then the countable union $⋃_{n=1}^∞ A_n ∈ β„±$.
        A mapping $ΞΌ: β„± β†’[0, ∞]$ is a measure on a measurable space $(Ξ©, β„±)$ if $ΞΌ(βˆ…)=0, ΞΌ(A) ≀ ΞΌ(B)$ whenever $A, B ∈ β„±$ and $A βŠ‚ B$, and $ΞΌ$ is countably additive: if $A_n ∈ β„±$ are disjoint for $n=1,2, β‹―$, then $ΞΌ\left(⋃_{n=1}^∞ A_n\right)=\sum_{n=1}^∞ ΞΌ\left(A_n\right)$
        Suppose $E ∈ β„±$, then $E ∈ β„±_E$ and $βˆ… ∈ β„±_E$. If $A ∈ β„±_E$, then $A ∈ β„±$ and $A βŠ‚ E$, then $Eβˆ–A=E ∩ A^c ∈ β„±$ as $A^c=Ξ©βˆ–A ∈ β„±$, thus $Eβˆ–A ∈ β„±_E$. Suppose now $A_n βŠ‚ E$ and $A_n ∈ β„±$, then $⋃_{n=1}^∞ A_n ∈ β„±$ and $⋃_{n=1}^∞ A_n βŠ‚ E$, hence $⋃_{n=1}^∞ A_n ∈ β„±_E$. By definition, $β„±_E$ is a $Οƒ$-algebra on $E$.
        We now prove that $Ξ½$ is a measure on $\left(E, β„±_E\right)$. Clearly $v(βˆ…)=ΞΌ(βˆ…)=0$, and if $A βŠ‚ B βŠ‚ E$ and $A, B ∈ β„±$ then $Ξ½(A)=ΞΌ(A) ≀ ΞΌ(B)=Ξ½(B)$. Suppose $\left\{A_n\right\}$ is a disjoint sequence of elements in $β„±_E$, then since $β„±_E βŠ‚ β„±$, and $⋃_{n=1}^∞ A_n ∈ β„±_E$ we have by the countable additivity of $ΞΌ$ $$ Ξ½\left(⋃_{n=1}^∞ A_n\right)=ΞΌ\left(⋃_{n=1}^∞ A_n\right)=\sum_{n=1}^∞ ΞΌ\left(A_n\right)=\sum_{n=1}^∞ Ξ½\left(A_n\right) $$ which shows that $Ξ½$ is a measure on $\left(E, β„±_E\right)$.
      2. Let $E_1=A_1$ and $E_n=A_nβˆ–A_{n-1}$ for $n β‰₯ 2, E_n ∈ β„±$ are disjoint (for $\left.n=1,2, β‹―\right)$. More over $⋃_{k=1}^n E_k=⋃_{k=1}^n A_k=A_n$ for $n=1,2, β‹―$, and $⋃_{k=1}^∞ E_k=⋃_{k=1}^∞ A_k$, thus, by countable additivity of $ΞΌ$ \begin{aligned} ΞΌ\left(⋃_{k=1}^∞ A_k\right)&=ΞΌ\left(⋃_{k=1}^∞ E_k\right)=\sum_{k=1}^∞ ΞΌ\left(E_k\right)=\lim _{nβ†’βˆž} \sum_{k=1}^n ΞΌ\left(E_k\right) \\ &=\lim _{nβ†’βˆž} ΞΌ\left(⋃_{k=1}^n E_k\right)=\lim _{nβ†’βˆž} ΞΌ\left(A_n\right) \end{aligned} Apply what we proved to the increasing sequence $B_1βˆ–B_n$ and use the fact that $$ ⋃_{k=1}^∞\left(B_1βˆ–B_k\right)=B_1βˆ–β‹‚_{k=1}^∞ B_k $$ we obtain $$ ΞΌ\left(B_1βˆ–β‹‚_{k=1}^∞ B_k\right)=\lim _{nβ†’βˆž} ΞΌ\left(B_1βˆ–B_n\right) $$ Since $ΞΌ\left(B_1\right)<∞$ so that $$ ΞΌ\left(B_1βˆ–β‹‚_{k=1}^∞ B_k\right)=ΞΌ\left(B_1\right)-ΞΌ\left(β‹‚_{k=1}^∞ B_k\right) $$ and $$ ΞΌ\left(B_1βˆ–B_n\right)=ΞΌ\left(B_1\right)-ΞΌ\left(B_n\right) $$ as $B_n βŠ‚ B_1$ and $β‹‚_{k=1}^∞ B_k βŠ‚ B_1$, which yields that $ΞΌ\left(β‹‚_{k=1}^∞ B_k\right)=\lim _{nβ†’βˆž} ΞΌ\left(B_n\right)$.
      3. Since $h(x) β‰₯ m(βˆ…) β‰₯ 0$, and $h(x) ≀ m(E)<∞$, so $h$ is a real valued, clearly increasing function on $ℝ$. Suppose $x ≀ y$, then $$ E ∩(-∞, y]=(E ∩(-∞, x]) βˆͺ(E ∩(x, y]) $$ and $$ (E ∩(-∞, x]) ∩(E ∩(x, y])=βˆ… $$ so by the additivity of the Lebesgue measure $m$ we have $$ m(E ∩(-∞, y])=m(E ∩(-∞, x])+m(E ∩(x, y]) $$ that is $$ h(y)=h(x)+m(E ∩(x, y]) $$ so that, for $y β‰₯ x$ $$ 0 ≀ h(y)-h(x)=m(E ∩(x, y]) ≀ m((x, y])=y-x $$ it follows that $|h(y)-h(x)| ≀|y-x|$ for any $x, y$, thus $h$ is uniformly continuous: for every $Ξ΅>0$ choose $Ξ΄=Ξ΅$, then $|h(y)-h(x)|<Ξ΅$ as long as $|y-x|<Ξ΄$. Now $$ h(n)=m(E ∩(-∞, n]) ↑ m(E) \text{ as } n ↑ ∞ $$ and $$ h(-n)=m(E ∩(-∞,-n]) ↓ m(βˆ…)=0 \text{ as } n ↑ ∞ $$ by 2). Thus, for any $c ∈(0, m(E))$ there is $n_1$ and $n_{2}$ such that $h\left(-n_1\right)<\frac{c}{2}$ and $h\left(n_{2}\right)>c+\frac{m(E)-c}{2}$. Apply IVT to the continuous function $h$ on $\left[-n_1, n_{2}\right]$, there is $ΞΎ ∈\left[-n_1, n_{2}\right]$ such that $c=h(ΞΎ)=m(E ∩(-∞, ΞΎ])$, so that $A=E ∩(-∞, ΞΎ]$ which is Lebesgue measurable will do.
      1. $f$ is continuous on $(0, ∞)$ so is measurable, on $(0,1]$ we have $|f(x)| ≀ \frac{x}{x^q}=\frac1{x^{q-1}}$.
        If $q-1<1$ i.e. $q<2, \frac1{x^{q-1}}$ is integrable on $(0,1]$.
        Now consider $f$ on $[1, ∞)$. In this case, $|f| β‰₯ 1_{[Ο€, n Ο€]} \frac{|\sin x|}{x^q}$ for every $n=1,2, β‹―$, so that \begin{aligned} ∫_1^∞|f(x)| d x&β‰₯ ∫_{Ο€}^{n Ο€} \frac{|\sin x|}{x^q} d x=\sum_{k=1}^{n-1} ∫_{k Ο€}^{(k+1) Ο€} \frac{|\sin x|}{x^q} d x \\ &=\sum_{k=1}^{n-1} ∫_0^{Ο€} \frac{\sin x}{(k Ο€+x)^q} d x β‰₯ \frac{∫_0^{Ο€} \sin x d x}{Ο€^q} \sum_{k=1}^{n-1} \frac1{(k+1)^q} \end{aligned} Since $\sum_{k=1}^∞ \frac1{k^q}=∞$ (divergent), so that, by letting $nβ†’βˆž$ we obtain $∫_1^∞|f(x)| d x=∞$, so that $|f|$ is not Lebesgue integrable, hence $f$ is not Lebesgue integrable either.
      2. $(x, y)β†’h_y(x)$ is continuous in $(0, ∞) Γ—[0, ∞)$ so that it is measurable (and $h_y$ is measurable for every $y β‰₯ 0$ fixed).
        For any fixed $y β‰₯ 0,\left|h_y(x)\right| ≀ \frac y{\sqrt{x}}$ on $(0,1]$, so by comparison to the integrable function $\frac1{\sqrt{x}}$ on $(0,1]$ we may conclude that $xβ†’h_y(x)$ is integrable on $(0,1]$. While $\left|h_y(x)\right| ≀ \frac y{x \sqrt{x}}$ on $(1, ∞)$, again by comparison (to the integrable function $\frac1{x^{\frac{3}{2}}}$ on $(1, ∞)$ ), $h_y$ is integrable. Putting together, we deduce that $h_y$ is integrable on $(0, ∞)$. For every $A>0$ $$ \left|h_y(x)\right| ≀ \frac{A}{\sqrt{x}} 1_{(0,1]}(x)+\frac{A}{x \sqrt{x}} 1_{(1, ∞)}(x) ≑ g(x) $$ and for any $y_0 ∈[0, A)$ we have $h_y(x)β†’h_{y_0}(x)$ for all $x$, thus by the theorem of taking limit under integration, we have $$ \lim _{yβ†’y_0} F(y)=∫_0^∞ h_{y_0}(x) d x=F\left(y_0\right) $$ which implies that $F$ is continuous on $[0, A)$ for any $A>0$. Hence $F$ is continuous on $[0, ∞)$. We next show $F$ is differentiable on $(0, ∞)$. We have $$ \frac{βˆ‚}{βˆ‚ y} h_y(x)=e^{-x} \frac{\cos (x y)}{\sqrt{x}} $$ for all $x>0$ and $y>0$, moreover we have the following simple estimate: $$ \left|\frac{βˆ‚}{βˆ‚ y} h_y(x)\right| ≀ \frac{e^{-x}}{\sqrt{x}} $$ for all $y>0$ and $x>0$. $xβ†’\frac{e^{-x}}{\sqrt{x}}$ is integrable by comparison: for $x>0$ $$ \frac{e^{-x}}{\sqrt{x}} ≀ \frac1{\sqrt{x}} 1_{(0,1]}(x)+e^{-x} 1_{(1, ∞)}(x) $$ thus, by the theorem of differentiating functions under integration, $F'(y)$ exists for all $y>0$ and $$ F'(y)=∫_0^∞ \frac{βˆ‚}{βˆ‚ y} h_y(x) d x=∫_0^∞ e^{-x} \frac{\cos (x y)}{\sqrt{x}} d x $$ Theorem 1. Let $E$ be measurable, and $J βŠ‚ ℝ$ be an interval. For $t ∈ J, f_{t}: E β†’[-∞, ∞]$ is measurable. Suppose for any $t_0 ∈ J, f_{t}β†’f_{t_0}$ ae on $E$, and there is $g ∈ L^1(E)$ such that $\left|f_{t}(x)\right| ≀ g(x)$ ae on $E$ for all $t ∈ J$. Then $f_{t} ∈ L^1(E)$ and $F(t)=∫_E f_{t}$ is continuous on $J$.
        Theorem 2. Let $E$ be a measurable set, and $J βŠ‚ ℝ$ be an interval. For each $t ∈ J, f_{t}: E→ℝ$ is measurable, and the following conditions are satisfied: for every $t ∈ J, f_{t} ∈ L^1(E)$, and define $F(t)=∫_E f_{t}$ for $t ∈ J$, for every $x ∈ E$, the partial derivative $$ \frac{βˆ‚}{βˆ‚ t} f_{t}(x)=\lim _{hβ†’0} \frac{f_{t+h}(x)-f_{t}(x)}{h} $$ exists for every $t ∈ J$ (here the limit runs over $hβ†’0$ such that $t+h ∈ J$), and there is a control function $g ∈ L^1(E)$ such that $$ \left|\frac{βˆ‚}{βˆ‚ t} f_{t}(x)\right| ≀ g(x) $$ ae on $E$ for all $t ∈ J$. Then $F$ is differentiable on $J$ and $$ F'(t)=∫_E \frac{βˆ‚}{βˆ‚ t} f_{t} $$
      3. $f_n$ are measurable as $f_n$ are continuous on $(0, ∞)$. We can show for example by L'Hopital rule that $f_n(x)β†’0$ as $nβ†’βˆž$ for every $x>0$. In order to apply DCT to conclude the limit, we need to find a control function. If $x ∈(0,1]$, then $$ 0 ≀ f_n(x) ≀ \frac{\ln(1+n)}n \frac{\sin x}{x^q} $$ Since $\sin x ≀ x$ and $\frac{\ln(1+n)}nβ†’0$, thus the sequence $\left\{\frac{\ln(1+n)}n: n=1,2,…\right\}$ is bounded, hence there is a constant $C_1>0$ such that $\frac{\ln(1+n)}n ≀ C_1$ for all $x$. Thus $$ 0 ≀ f_n(x) ≀ C_1 \frac1{x^{q-1}} $$ Since $q-1<1$ so $C_1 \frac1{x^{q-1}}$ is integrable on $(0,1]$. Now we consider $x>1$. Then \begin{aligned} \frac{\ln(x+n)}n&=\frac{\ln n+\ln \left(\frac{x}n+1\right)}n\\&≀ \frac{\ln n+\ln(x+1)}n \\ &≀ C_1+\ln(x+1) \end{aligned} thus $$ \left|f_n(x)\right| ≀ \frac{C_1}{x^q}+\frac{\ln(x+1)}{x^q} $$ for all $x β‰₯ 1$. $\frac{C_1}{x^q}$ is integrable on $(1, ∞)$ as $q>1$, we show $\frac{\ln(x+1)}{x^q}$ is integrable on $(1, ∞)$ as well. In fact $q>1$ so we may choose $q>p>1$ and write $$ \frac{\ln(x+1)}{x^q}=\frac{\ln(x+1)}{x^{q-p}} \frac1{x^{p}} $$ for $x β‰₯ 1$. Let $u(x)=\frac{\ln(x+1)}{x^{q-p}}$. Then $u$ is continuous and non-negative, $u(1)=\ln 2, u(x)β†’0$ as $xβ†’βˆž$, thus $u$ must be bounded on $[1, ∞)$. Thus there is $C_{2}>0$ such that $\frac{\ln(x+1)}{x^{q-p}} ≀ C_{2}$ for all $x β‰₯ 1$. Thus $$ \left|f_n(x)\right| ≀ \frac{C_1}{x^q}+\frac{C_{2}}{x^{p}} $$ for $x β‰₯ 1$. Since both $\frac{C_1}{x^q}$ and $\frac{C_{2}}{x^{p}}$ are Lebesgue integrable on $[1, ∞)$. Hence, by DCT we have $$ \lim _{nβ†’βˆž} ∫_0^∞ f_n(x) d x=∫_0^∞ \lim _{nβ†’βˆž} f_n(x) d x=0 $$ DCT: Let $E$ be a measurable set, $f_n: E β†’[-∞, ∞]$ be measurable, and $f=\lim _{nβ†’βˆž} f_n$ almost everywhere on $E$. Suppose that there is $g ∈ L^1(E)$ such that $\left|f_n(x)\right| ≀ g(x)$ for almost all $x ∈ E$. Then $f$ and $f_n$ are integrable, and $∫_E f=\lim _{nβ†’βˆž} ∫_E f_n$.
      1. $f$ is continuous at $(x, y) β‰ (0,0)$ so it is measurable. For $y β‰  0, xβ†’f(x, y)$ is continuous on $[-1,1]$, so it is Riemann integrable, thus must be Lebesgue integrable. The function is odd, so that $$ ∫_{-1}^1 f(x, y) d x=0 $$ for all $y β‰  0$. Hence $$ ∫_{-1}^1\left(∫_{-1}^1 f(x, y) d x\right) d y=0 $$ By symmetry, we also have $$ ∫_{-1}^1\left(∫_{-1}^1 f(x, y) d y\right) d x=0 $$ The function is not integrable, as it is not integrable on $(0,1) Γ—(0,1)$ on which $f$ is non-negative. In fact $$ ∫_0^1 \frac{x y}{\left(x^{2}+y^{2}\right)^{3}} d x=\left.\frac y{2} \frac1{1-3} \frac1{\left(x^{2}+y^{2}\right)^{2}}\right|_0 ^1=\frac1{4} \frac1{y^{3}}-\frac1{4} \frac y{\left(1+y^{2}\right)^{2}} $$ which is not integrable on $(0,1)$. According to Tonelli's theorem, $f$ can not be integrable on $(0,1) Γ—(0,1)$, so neither on $[-1,1] Γ—[-1,1]$.
      2. $f$ is measurable. Let us show $f$ is integrable on $ℝ^{2}$ by using Tonelli's theorem. To this end, consider the iterated integral $$ ∫_{-∞}^∞\left(∫_{-∞}^∞|f(x, y)| d x\right) d y=∫_{-∞}^∞\left(∫_{-∞}^∞ \frac{|\sin (x-y)|}{|x-y|^{3 / 2}}|g(y)| d x\right) d y $$ Since $$ ∫_{-∞}^∞ \frac{|\sin (x-y)|}{|x-y|^{3 / 2}}|g(y)| d x=|g(y)| ∫_{-∞}^∞ \frac{|\sin (x-y)|}{|x-y|^{3 / 2}} d x $$ By making change of variable $t=x-y$, we have \begin{aligned} ∫_{-∞}^∞ \frac{|\sin (x-y)|}{|x-y|^{3 / 2}} d x&=∫_{-∞}^∞ \frac{|\sin t|}{|t|^{3 / 2}} d t=2 ∫_0^∞ \frac{|\sin t|}{t^{3 / 2}} d t \\ &=2 ∫_0^1 \frac{|\sin t|}{t^{3 / 2}} d t+2 ∫_1^∞ \frac{|\sin t|}{t^{3 / 2}} d t \\ &≀ 2 ∫_0^1 \frac1{\sqrt{t}} d t+2 ∫_1^∞ \frac1{t^{3 / 2}} d t \\ &=4+4=8 \end{aligned} so that $$ ∫_{-∞}^∞|f(x, y)| d x ≀ 8|g(y)| $$ for all $y$. Since $g$ is integrable, so is $|g|$, hence $$ ∫_{-∞}^∞\left(∫_{-∞}^∞|f(x, y)| d x\right) d y ≀ 8 ∫_{-∞}^∞|g(y)| d y<∞ $$ Thus, according to Tonelli's theorem, $f$ is integrable on $ℝ^{2}$, and Fubini's theorem applies (to both $f$ and $|f|)$. It follows that \begin{aligned} \left|∫_{ℝ^{2}} f\right|&≀ ∫_{ℝ^{2}}|f|=∫_{-∞}^∞\left(∫_{-∞}^∞|f(x, y)| d x\right) d y \\ &≀ 8 ∫_{-∞}^∞|g(y)| d y . \end{aligned} Fubini's theorem. Let $A, B ∈ β„³_{\text{Leb }}\left[\text{so}A Γ— B ∈ β„³_{\text{Leb }}\left(ℝ^{2}\right)\right]$ and $f ∈ L^{2}(A Γ— B)$. Then for almost all $y ∈ B, f_y ∈ L^1(B)$, where $f_y(x)=f(y, x)$ for $x ∈ A$, so $F(y)=∫_{A} f_y$ is well defined for almost all $y ∈ B$, and $F$ is integrable on $B$ (so in particular, $F$ is Lebesgue measurable), and $∫_{B} F=∫_{A Γ— B} f$. Therefore $$ ∫_{B}\left(∫_{A} f(x, y) \mathrm{d} x\right) \mathrm{d} y=∫_{A}\left(∫_{B} f(x, y) \mathrm{d} y\right) \mathrm{d} x=∫_{A Γ— B} f(x, y) \mathrm{d} x \mathrm{~d} y . $$ Tonelli's theorem. Suppose that $f: ℝ^{2}→ℝ$ is measurable, and suppose either of the repeated integrals exists and is finite: $$ ∫_{ℝ}\left(∫_{ℝ}|f(x, y)| \mathrm{d} x\right) \mathrm{d} y,   ∫_{ℝ}\left(∫_{ℝ}|f(x, y)| \mathrm{d} y\right) \mathrm{d} x . $$ Then $f ∈ L^1\left(ℝ^{2}\right)$, so that Fubini's theorem is applicable to both $f$ and $|f|$.