- What does it mean that $(Ξ©, β±)$ is a measurable space, and what does it mean that $ΞΌ$ is a measure on $(Ξ©, β±)$ ? Let $ΞΌ$ be a measure on a measurable space $(Ξ©, β±)$ (so that $(Ξ©, β±, ΞΌ)$ is a measure space).
Let $E β β±$. Define $β±_E=\{A: A β E$ and $A β β±\}$ and define $Ξ½(A)=ΞΌ(A)$ for every $A β β±_E$. Show that $β±_E$ is a $Ο$-algebra and $Ξ½$ is a measure on $\left(E, β±_E\right)$. - Let $(Ξ©, β±, ΞΌ)$ be a measure space. Suppose $A_n, B_n β β±$, where $A_n β A_{n+1}$ and $B_n β B_{n+1}$ for $n=1,2, β―$, and suppose $ΞΌ\left(B_1\right)<β$. Show that $$ ΞΌ\left(β_{n=1}^β A_n\right)=\lim _{nββ} ΞΌ\left(A_n\right) $$ and that $$ ΞΌ\left(β_{n=1}^β B_n\right)=\lim _{nββ} ΞΌ\left(B_n\right) . $$
- Let $\left(β, β³_{\text{Leb }}, m\right)$ be the Lebesgue measure space, and let $E β β³_{\text{Leb }}$ be such that $0<m(E)<β$. Show that the function defined so that $h(x)=m(E β©(-β, x])$ for $x β β$ is uniformly continuous on β, and show that for every $c β(0, m(E))$ there is a Lebesgue measurable subset $A β E$ such that $m(A)=c$.
- Let $$ f(x)=\frac{\sin x}{x^q} $$ for $x>0$, where $q>0$ is a constant. Show that $f$ is Lebesgue integrable on $(0,1]$ if $q<2$, and $f$ is not Lebesgue integrable on $[1, β)$ for $0<q β©½ 1$.
- Let $y β β$, and let
$$
h_y(x)=e^{-x} \frac{\sin (x y)}{x \sqrt{x}}
$$
for $x>0$. Show that $h_y$ is Lebesgue integrable on $(0, β)$ for every $y β©Ύ 0$.
Let $$ F(y)=β«_0^β h_y(x) \mathrm{d} x $$ for $y β©Ύ 0$. Show that $F$ is continuous on $[0, β)$, differentiable on $(0, β)$, and $$ F'(y)=β«_0^β e^{-x} \frac{\cos (x y)}{\sqrt{x}} \mathrm{~d} x $$ for $y>0$. - For $x>0$, let $$ f_n(x)=\frac{\ln(x+n)}n \frac{\sin x}{x^q} $$ where $q$ is a constant such that $1<q<2$. Show that $$ \lim _{nββ} β«_0^β f_n(x) \mathrm{d} x=0 $$ [You may use any convergence theorems covered in the lectures, as long as you state them clearly.]
- Consider the function $$ f(x, y)=\frac{x y}{\left(x^2+y^2\right)^3} $$ for $(x, y) β (0,0)$ and $f(0,0)=0$. Show that $$ β«_{-1}^1\left(β«_{-1}^1 f(x, y) \mathrm{d} x\right) \mathrm{d} y=β«_{-1}^1\left(β«_{-1}^1 f(x, y) \mathrm{d} y\right) \mathrm{d} x=0 $$ and show that $f$ is not Lebesgue integrable on $[-1,1] Γ[-1,1]$.
- Consider the two variable function $f(x, y)$ defined so that $$ f(x, y)=\frac{\sin (x-y)}{|x-y|^{3 / 2}} g(y) $$ for $x β y$, and $f(x, x)=0$, where $g$ is Lebesgue integrable in $β$. Show that $f$ is Lebesgue integrable on $β^2$, and $$ \left|β«_{β^2} f(x, y) \mathrm{d} x \mathrm{~d} y\right| β©½ 8 β«_{-β}^β|g(y)| \mathrm{d} y $$ [You may use Fubini's theorem and Tonelli's theorem without proof, as long as you state them clearly.]
Solution
-
- $(Ξ©, β±)$ is called a measurable space if $β±$ is a $Ο$-algebra of some subsets of $Ξ©$, here $β±$ is a $Ο$-algebra on $Ξ©$ if $Ξ©$ and empty set $β
$ belong to $β±$, if $A β β±$ then so does $A^c$, and if $A_n β β±$ (where $n=1,2, β―$) then the countable union $β_{n=1}^β A_n β β±$.
A mapping $ΞΌ: β± β[0, β]$ is a measure on a measurable space $(Ξ©, β±)$ if $ΞΌ(β )=0, ΞΌ(A) β€ ΞΌ(B)$ whenever $A, B β β±$ and $A β B$, and $ΞΌ$ is countably additive: if $A_n β β±$ are disjoint for $n=1,2, β―$, then $ΞΌ\left(β_{n=1}^β A_n\right)=\sum_{n=1}^β ΞΌ\left(A_n\right)$
Suppose $E β β±$, then $E β β±_E$ and $β β β±_E$. If $A β β±_E$, then $A β β±$ and $A β E$, then $EβA=E β© A^c β β±$ as $A^c=Ξ©βA β β±$, thus $EβA β β±_E$. Suppose now $A_n β E$ and $A_n β β±$, then $β_{n=1}^β A_n β β±$ and $β_{n=1}^β A_n β E$, hence $β_{n=1}^β A_n β β±_E$. By definition, $β±_E$ is a $Ο$-algebra on $E$.
We now prove that $Ξ½$ is a measure on $\left(E, β±_E\right)$. Clearly $v(β )=ΞΌ(β )=0$, and if $A β B β E$ and $A, B β β±$ then $Ξ½(A)=ΞΌ(A) β€ ΞΌ(B)=Ξ½(B)$. Suppose $\left\{A_n\right\}$ is a disjoint sequence of elements in $β±_E$, then since $β±_E β β±$, and $β_{n=1}^β A_n β β±_E$ we have by the countable additivity of $ΞΌ$ $$ Ξ½\left(β_{n=1}^β A_n\right)=ΞΌ\left(β_{n=1}^β A_n\right)=\sum_{n=1}^β ΞΌ\left(A_n\right)=\sum_{n=1}^β Ξ½\left(A_n\right) $$ which shows that $Ξ½$ is a measure on $\left(E, β±_E\right)$. - Let $E_1=A_1$ and $E_n=A_nβA_{n-1}$ for $n β₯ 2, E_n β β±$ are disjoint (for $\left.n=1,2, β―\right)$. More over $β_{k=1}^n E_k=β_{k=1}^n A_k=A_n$ for $n=1,2, β―$, and $β_{k=1}^β E_k=β_{k=1}^β A_k$, thus, by countable additivity of $ΞΌ$ \begin{aligned} ΞΌ\left(β_{k=1}^β A_k\right)&=ΞΌ\left(β_{k=1}^β E_k\right)=\sum_{k=1}^β ΞΌ\left(E_k\right)=\lim _{nββ} \sum_{k=1}^n ΞΌ\left(E_k\right) \\ &=\lim _{nββ} ΞΌ\left(β_{k=1}^n E_k\right)=\lim _{nββ} ΞΌ\left(A_n\right) \end{aligned} Apply what we proved to the increasing sequence $B_1βB_n$ and use the fact that $$ β_{k=1}^β\left(B_1βB_k\right)=B_1ββ_{k=1}^β B_k $$ we obtain $$ ΞΌ\left(B_1ββ_{k=1}^β B_k\right)=\lim _{nββ} ΞΌ\left(B_1βB_n\right) $$ Since $ΞΌ\left(B_1\right)<β$ so that $$ ΞΌ\left(B_1ββ_{k=1}^β B_k\right)=ΞΌ\left(B_1\right)-ΞΌ\left(β_{k=1}^β B_k\right) $$ and $$ ΞΌ\left(B_1βB_n\right)=ΞΌ\left(B_1\right)-ΞΌ\left(B_n\right) $$ as $B_n β B_1$ and $β_{k=1}^β B_k β B_1$, which yields that $ΞΌ\left(β_{k=1}^β B_k\right)=\lim _{nββ} ΞΌ\left(B_n\right)$.
- Since $h(x) β₯ m(β ) β₯ 0$, and $h(x) β€ m(E)<β$, so $h$ is a real valued, clearly increasing function on $β$. Suppose $x β€ y$, then $$ E β©(-β, y]=(E β©(-β, x]) βͺ(E β©(x, y]) $$ and $$ (E β©(-β, x]) β©(E β©(x, y])=β $$ so by the additivity of the Lebesgue measure $m$ we have $$ m(E β©(-β, y])=m(E β©(-β, x])+m(E β©(x, y]) $$ that is $$ h(y)=h(x)+m(E β©(x, y]) $$ so that, for $y β₯ x$ $$ 0 β€ h(y)-h(x)=m(E β©(x, y]) β€ m((x, y])=y-x $$ it follows that $|h(y)-h(x)| β€|y-x|$ for any $x, y$, thus $h$ is uniformly continuous: for every $Ξ΅>0$ choose $Ξ΄=Ξ΅$, then $|h(y)-h(x)|<Ξ΅$ as long as $|y-x|<Ξ΄$. Now $$ h(n)=m(E β©(-β, n]) β m(E) \text{ as } n β β $$ and $$ h(-n)=m(E β©(-β,-n]) β m(β )=0 \text{ as } n β β $$ by 2). Thus, for any $c β(0, m(E))$ there is $n_1$ and $n_{2}$ such that $h\left(-n_1\right)<\frac{c}{2}$ and $h\left(n_{2}\right)>c+\frac{m(E)-c}{2}$. Apply IVT to the continuous function $h$ on $\left[-n_1, n_{2}\right]$, there is $ΞΎ β\left[-n_1, n_{2}\right]$ such that $c=h(ΞΎ)=m(E β©(-β, ΞΎ])$, so that $A=E β©(-β, ΞΎ]$ which is Lebesgue measurable will do.
- $(Ξ©, β±)$ is called a measurable space if $β±$ is a $Ο$-algebra of some subsets of $Ξ©$, here $β±$ is a $Ο$-algebra on $Ξ©$ if $Ξ©$ and empty set $β
$ belong to $β±$, if $A β β±$ then so does $A^c$, and if $A_n β β±$ (where $n=1,2, β―$) then the countable union $β_{n=1}^β A_n β β±$.
-
- $f$ is continuous on $(0, β)$ so is measurable, on $(0,1]$ we have $|f(x)| β€ \frac{x}{x^q}=\frac1{x^{q-1}}$.
If $q-1<1$ i.e. $q<2, \frac1{x^{q-1}}$ is integrable on $(0,1]$.
Now consider $f$ on $[1, β)$. In this case, $|f| β₯ 1_{[Ο, n Ο]} \frac{|\sin x|}{x^q}$ for every $n=1,2, β―$, so that \begin{aligned} β«_1^β|f(x)| d x&β₯ β«_{Ο}^{n Ο} \frac{|\sin x|}{x^q} d x=\sum_{k=1}^{n-1} β«_{k Ο}^{(k+1) Ο} \frac{|\sin x|}{x^q} d x \\ &=\sum_{k=1}^{n-1} β«_0^{Ο} \frac{\sin x}{(k Ο+x)^q} d x β₯ \frac{β«_0^{Ο} \sin x d x}{Ο^q} \sum_{k=1}^{n-1} \frac1{(k+1)^q} \end{aligned} Since $\sum_{k=1}^β \frac1{k^q}=β$ (divergent), so that, by letting $nββ$ we obtain $β«_1^β|f(x)| d x=β$, so that $|f|$ is not Lebesgue integrable, hence $f$ is not Lebesgue integrable either. - $(x, y)βh_y(x)$ is continuous in $(0, β) Γ[0, β)$ so that it is measurable (and $h_y$ is measurable for every $y β₯ 0$ fixed).
For any fixed $y β₯ 0,\left|h_y(x)\right| β€ \frac y{\sqrt{x}}$ on $(0,1]$, so by comparison to the integrable function $\frac1{\sqrt{x}}$ on $(0,1]$ we may conclude that $xβh_y(x)$ is integrable on $(0,1]$. While $\left|h_y(x)\right| β€ \frac y{x \sqrt{x}}$ on $(1, β)$, again by comparison (to the integrable function $\frac1{x^{\frac{3}{2}}}$ on $(1, β)$ ), $h_y$ is integrable. Putting together, we deduce that $h_y$ is integrable on $(0, β)$. For every $A>0$ $$ \left|h_y(x)\right| β€ \frac{A}{\sqrt{x}} 1_{(0,1]}(x)+\frac{A}{x \sqrt{x}} 1_{(1, β)}(x) β‘ g(x) $$ and for any $y_0 β[0, A)$ we have $h_y(x)βh_{y_0}(x)$ for all $x$, thus by the theorem of taking limit under integration, we have $$ \lim _{yβy_0} F(y)=β«_0^β h_{y_0}(x) d x=F\left(y_0\right) $$ which implies that $F$ is continuous on $[0, A)$ for any $A>0$. Hence $F$ is continuous on $[0, β)$. We next show $F$ is differentiable on $(0, β)$. We have $$ \frac{β}{β y} h_y(x)=e^{-x} \frac{\cos (x y)}{\sqrt{x}} $$ for all $x>0$ and $y>0$, moreover we have the following simple estimate: $$ \left|\frac{β}{β y} h_y(x)\right| β€ \frac{e^{-x}}{\sqrt{x}} $$ for all $y>0$ and $x>0$. $xβ\frac{e^{-x}}{\sqrt{x}}$ is integrable by comparison: for $x>0$ $$ \frac{e^{-x}}{\sqrt{x}} β€ \frac1{\sqrt{x}} 1_{(0,1]}(x)+e^{-x} 1_{(1, β)}(x) $$ thus, by the theorem of differentiating functions under integration, $F'(y)$ exists for all $y>0$ and $$ F'(y)=β«_0^β \frac{β}{β y} h_y(x) d x=β«_0^β e^{-x} \frac{\cos (x y)}{\sqrt{x}} d x $$ Theorem 1. Let $E$ be measurable, and $J β β$ be an interval. For $t β J, f_{t}: E β[-β, β]$ is measurable. Suppose for any $t_0 β J, f_{t}βf_{t_0}$ ae on $E$, and there is $g β L^1(E)$ such that $\left|f_{t}(x)\right| β€ g(x)$ ae on $E$ for all $t β J$. Then $f_{t} β L^1(E)$ and $F(t)=β«_E f_{t}$ is continuous on $J$.
Theorem 2. Let $E$ be a measurable set, and $J β β$ be an interval. For each $t β J, f_{t}: Eββ$ is measurable, and the following conditions are satisfied: for every $t β J, f_{t} β L^1(E)$, and define $F(t)=β«_E f_{t}$ for $t β J$, for every $x β E$, the partial derivative $$ \frac{β}{β t} f_{t}(x)=\lim _{hβ0} \frac{f_{t+h}(x)-f_{t}(x)}{h} $$ exists for every $t β J$ (here the limit runs over $hβ0$ such that $t+h β J$), and there is a control function $g β L^1(E)$ such that $$ \left|\frac{β}{β t} f_{t}(x)\right| β€ g(x) $$ ae on $E$ for all $t β J$. Then $F$ is differentiable on $J$ and $$ F'(t)=β«_E \frac{β}{β t} f_{t} $$ - $f_n$ are measurable as $f_n$ are continuous on $(0, β)$. We can show for example by L'Hopital rule that $f_n(x)β0$ as $nββ$ for every $x>0$. In order to apply DCT to conclude the limit, we need to find a control function. If $x β(0,1]$, then $$ 0 β€ f_n(x) β€ \frac{\ln(1+n)}n \frac{\sin x}{x^q} $$ Since $\sin x β€ x$ and $\frac{\ln(1+n)}nβ0$, thus the sequence $\left\{\frac{\ln(1+n)}n: n=1,2,β¦\right\}$ is bounded, hence there is a constant $C_1>0$ such that $\frac{\ln(1+n)}n β€ C_1$ for all $x$. Thus $$ 0 β€ f_n(x) β€ C_1 \frac1{x^{q-1}} $$ Since $q-1<1$ so $C_1 \frac1{x^{q-1}}$ is integrable on $(0,1]$. Now we consider $x>1$. Then \begin{aligned} \frac{\ln(x+n)}n&=\frac{\ln n+\ln \left(\frac{x}n+1\right)}n\\&β€ \frac{\ln n+\ln(x+1)}n \\ &β€ C_1+\ln(x+1) \end{aligned} thus $$ \left|f_n(x)\right| β€ \frac{C_1}{x^q}+\frac{\ln(x+1)}{x^q} $$ for all $x β₯ 1$. $\frac{C_1}{x^q}$ is integrable on $(1, β)$ as $q>1$, we show $\frac{\ln(x+1)}{x^q}$ is integrable on $(1, β)$ as well. In fact $q>1$ so we may choose $q>p>1$ and write $$ \frac{\ln(x+1)}{x^q}=\frac{\ln(x+1)}{x^{q-p}} \frac1{x^{p}} $$ for $x β₯ 1$. Let $u(x)=\frac{\ln(x+1)}{x^{q-p}}$. Then $u$ is continuous and non-negative, $u(1)=\ln 2, u(x)β0$ as $xββ$, thus $u$ must be bounded on $[1, β)$. Thus there is $C_{2}>0$ such that $\frac{\ln(x+1)}{x^{q-p}} β€ C_{2}$ for all $x β₯ 1$. Thus $$ \left|f_n(x)\right| β€ \frac{C_1}{x^q}+\frac{C_{2}}{x^{p}} $$ for $x β₯ 1$. Since both $\frac{C_1}{x^q}$ and $\frac{C_{2}}{x^{p}}$ are Lebesgue integrable on $[1, β)$. Hence, by DCT we have $$ \lim _{nββ} β«_0^β f_n(x) d x=β«_0^β \lim _{nββ} f_n(x) d x=0 $$ DCT: Let $E$ be a measurable set, $f_n: E β[-β, β]$ be measurable, and $f=\lim _{nββ} f_n$ almost everywhere on $E$. Suppose that there is $g β L^1(E)$ such that $\left|f_n(x)\right| β€ g(x)$ for almost all $x β E$. Then $f$ and $f_n$ are integrable, and $β«_E f=\lim _{nββ} β«_E f_n$.
- $f$ is continuous on $(0, β)$ so is measurable, on $(0,1]$ we have $|f(x)| β€ \frac{x}{x^q}=\frac1{x^{q-1}}$.
-
- $f$ is continuous at $(x, y) β (0,0)$ so it is measurable. For $y β 0, xβf(x, y)$ is continuous on $[-1,1]$, so it is Riemann integrable, thus must be Lebesgue integrable. The function is odd, so that $$ β«_{-1}^1 f(x, y) d x=0 $$ for all $y β 0$. Hence $$ β«_{-1}^1\left(β«_{-1}^1 f(x, y) d x\right) d y=0 $$ By symmetry, we also have $$ β«_{-1}^1\left(β«_{-1}^1 f(x, y) d y\right) d x=0 $$ The function is not integrable, as it is not integrable on $(0,1) Γ(0,1)$ on which $f$ is non-negative. In fact $$ β«_0^1 \frac{x y}{\left(x^{2}+y^{2}\right)^{3}} d x=\left.\frac y{2} \frac1{1-3} \frac1{\left(x^{2}+y^{2}\right)^{2}}\right|_0 ^1=\frac1{4} \frac1{y^{3}}-\frac1{4} \frac y{\left(1+y^{2}\right)^{2}} $$ which is not integrable on $(0,1)$. According to Tonelli's theorem, $f$ can not be integrable on $(0,1) Γ(0,1)$, so neither on $[-1,1] Γ[-1,1]$.
- $f$ is measurable. Let us show $f$ is integrable on $β^{2}$ by using Tonelli's theorem. To this end, consider the iterated integral $$ β«_{-β}^β\left(β«_{-β}^β|f(x, y)| d x\right) d y=β«_{-β}^β\left(β«_{-β}^β \frac{|\sin (x-y)|}{|x-y|^{3 / 2}}|g(y)| d x\right) d y $$ Since $$ β«_{-β}^β \frac{|\sin (x-y)|}{|x-y|^{3 / 2}}|g(y)| d x=|g(y)| β«_{-β}^β \frac{|\sin (x-y)|}{|x-y|^{3 / 2}} d x $$ By making change of variable $t=x-y$, we have \begin{aligned} β«_{-β}^β \frac{|\sin (x-y)|}{|x-y|^{3 / 2}} d x&=β«_{-β}^β \frac{|\sin t|}{|t|^{3 / 2}} d t=2 β«_0^β \frac{|\sin t|}{t^{3 / 2}} d t \\ &=2 β«_0^1 \frac{|\sin t|}{t^{3 / 2}} d t+2 β«_1^β \frac{|\sin t|}{t^{3 / 2}} d t \\ &β€ 2 β«_0^1 \frac1{\sqrt{t}} d t+2 β«_1^β \frac1{t^{3 / 2}} d t \\ &=4+4=8 \end{aligned} so that $$ β«_{-β}^β|f(x, y)| d x β€ 8|g(y)| $$ for all $y$. Since $g$ is integrable, so is $|g|$, hence $$ β«_{-β}^β\left(β«_{-β}^β|f(x, y)| d x\right) d y β€ 8 β«_{-β}^β|g(y)| d y<β $$ Thus, according to Tonelli's theorem, $f$ is integrable on $β^{2}$, and Fubini's theorem applies (to both $f$ and $|f|)$. It follows that \begin{aligned} \left|β«_{β^{2}} f\right|&β€ β«_{β^{2}}|f|=β«_{-β}^β\left(β«_{-β}^β|f(x, y)| d x\right) d y \\ &β€ 8 β«_{-β}^β|g(y)| d y . \end{aligned} Fubini's theorem. Let $A, B β β³_{\text{Leb }}\left[\text{so}A Γ B β β³_{\text{Leb }}\left(β^{2}\right)\right]$ and $f β L^{2}(A Γ B)$. Then for almost all $y β B, f_y β L^1(B)$, where $f_y(x)=f(y, x)$ for $x β A$, so $F(y)=β«_{A} f_y$ is well defined for almost all $y β B$, and $F$ is integrable on $B$ (so in particular, $F$ is Lebesgue measurable), and $β«_{B} F=β«_{A Γ B} f$. Therefore $$ β«_{B}\left(β«_{A} f(x, y) \mathrm{d} x\right) \mathrm{d} y=β«_{A}\left(β«_{B} f(x, y) \mathrm{d} y\right) \mathrm{d} x=β«_{A Γ B} f(x, y) \mathrm{d} x \mathrm{~d} y . $$ Tonelli's theorem. Suppose that $f: β^{2}ββ$ is measurable, and suppose either of the repeated integrals exists and is finite: $$ β«_{β}\left(β«_{β}|f(x, y)| \mathrm{d} x\right) \mathrm{d} y, β β«_{β}\left(β«_{β}|f(x, y)| \mathrm{d} y\right) \mathrm{d} x . $$ Then $f β L^1\left(β^{2}\right)$, so that Fubini's theorem is applicable to both $f$ and $|f|$.
PREVIOUSIntegration Lectures