Let $P(x, y, z)$ be a homogeneous polynomial of degree $d$ defining a nonsingular curve $C$ in $āā^2$.
(i) Write down Euler's relation for $P, P_x, P_y, P_z$. Deduce that the Hessian determinant satisfies:
\[
z ā_P(x, y, z)=(d-1) \det\begin{pmatrix}
P_{xx} & P_{xy} & P_{xz} \\
P_{yx} & P_{yy} & P_{yz} \\
P_x& P_y & P_z
\end{pmatrix}
\]
Solution. Euler's relation $dP=xP_x+yP_y+zP_z$.
Both sides $ā_x$ we get $dP_x=P_x+xP_{xx}+yP_{yx}+zP_{zx}$, so
\[(d-1)P_x=xP_{xx}+yP_{yx}+zP_{zx}\]
Both sides $ā_y$ we get $dP_y=P_y+xP_{xy}+yP_{yy}+zP_{zy}$, so
\[(d-1)P_y=xP_{xy}+yP_{yy}+zP_{zy}\]
Both sides $ā_z$ we get $dP_z=P_z+xP_{xz}+yP_{yz}+zP_{zz}$, so
\[(d-1)P_z=xP_{xz}+yP_{yz}+zP_{zz}\]
By definition of Hessian and linearity of det,
\[
z ā_P(x, y, z)=\det\begin{pmatrix}
P_{xx} & P_{xy} & P_{xz} \\
P_{yx} & P_{yy} & P_{yz} \\
zP_{zx} &zP_{zy}&zP_{zz}
\end{pmatrix}\]
Adding $x$ times first row, $y$ times second row to third row
\[=(d-1) \det\begin{pmatrix}
P_{xx} & P_{xy} & P_{xz} \\
P_{yx} & P_{yy} & P_{yz} \\
P_x& P_y & P_z
\end{pmatrix}.āā
\]
(ii) Deduce further that:
\[
z^2 ā_P(x, y, z)=(d-1)^2 \det\begin{pmatrix}
P_{xx} & P_{xy} & P_x\\
P_{yx} & P_{yy} & P_y \\
P_x& P_y & d P /(d-1)
\end{pmatrix}
\]
Solution.
Adding $x$ times first column, $y$ times second column to third column, we get the determinant. ā
(iii) Deduce that if $P(x, y, 1)=y-g(x)$ then $[a, b, 1]$ is a point of inflection of $C$ if and only if $b=g(a)$ and $g''(a)=0$.
This shows the lectures definition of points of inflection corresponds to the usual notion of a point of inflection of the graph of a function $g(x)$ on $ā$ or $ā$.
Solution. point$āCāP(a,b,1)=0āb=g(a)$.
By (ii),
\[
z^2 ā_P(x, y, z)=(d-1)^2 \det\begin{pmatrix}
-g''(x)&0&-g'(x)\\
0&0&1\\
-g'(x)&1&0
\end{pmatrix}=(d-1)^2g''(x)
\]
so $ā_P(a,b,1)=0āg''(a)=0$ (if $d=1$, $g''=0$).