Let $X$ be a Hilbert space and $T â â¬(X)$. Show that the graph $Î(T)$ of $T$ is a closed subspace of $X à X$ and that
\[
Î(T)^â=\{(-T^* x, x): x â X\} .
\]
By considering the orthogonal decomposition of $(x, 0)$, prove that $I+T^* T: X â X$ is surjective.
[Recall: if $X$ is Hilbert space, $X à X$ with $âš(x_1, x_2),(y_1, y_2)â©_{X à X}=âšx_1, y_1â©_X+âšx_2, y_2â©_X$ is Hilbert space.]
Proof. $Î(T)$ is closed by Closed Graph Theorem.
$$(a,b)âÎ(T)^âââx,âš(a,b),(x,T(x))â©=âša,xâ©+âšb,T(x)â©=0\\ââx,âša+T^*(b),xâ©=0\\âa=-T^*(b).$$
so $Î(T)^â=\{(-T^* x, x): x â X\}.$
Let the orthogonal decomposition of $(x, 0)$ be $(x, 0)=(y,Ty)+(x-y,-Ty)$.
$(x-y,-Ty)âÎ(T)^â$, so $x-y=T^*Ty$, so $xâ\operatorname{Im}(I+T^* T)$, so $I+T^* T$ is surjective.