Let $1β€p
Proof. since $|x_k|^q<|x_k|^p$ for $k$ large, $\sum_k|x_k|^p<β\implies\sum_k|x_k|^q<β$, so $l^p(β)βl^q(β)$. Consider $A_nβ\{x β l^p:βxβ_p β€ n\}$. Want to show $A_n$ is nowhere dense in $l^q$. Thus $l^p=\bigcup_{n=1}^βA_n$ is of first category in $l^q$. Wlog $n=1$. To prove $A_1$ is closed, if a sequence $x_nβA_1$ converges to $xβl^q$, for any $iββ$, ${|x^{(i)}-x_n^{(i)}|}β€\|x-x_n\|_q β 0$, so $x_n^{(i)} β x^{(i)}$ as $n β β$. By Fatou's lemma [Proof: $βN,n^pβ₯βx_nβ_p^pβ₯\sum_{kβ€N}|x_k^{(j)}|^pβ\sum_{kβ€N}|x_k|^p$.] \[\|x\|_pβ€\lim_{nββ}\|x_n\|_pβ€1\]So $A_1$ is closed. To prove $\mathring{A_1}=β $ in $l^q$, for any $x β A_1$, for any $r$, we show $B_r(x)βl^p$: Set $y_j=\frac1{j^{1/p}},yβ l^q β l^p$, $βyβ_q=1$, then $\frac{r}{2}y+x$ is in $B_r(x)$ but not in $l^p$, since $yβl^p$. As $r>0$ is arbitrary, $xβ\mathring{A_1}$ and thus $\mathring{A_1}=β $. In general every proper subspace has empty interior (2) $l^p$ is dense in $(l^q(β),ββ β_{l^q})$. Proof: The space $c_{00}=\{(x_n):x_n=0 \text{ all but finitely many }n\}$ is dense in $l^q$ $β1β€q<β$. Obviously $c_{00}β l^p$ so $l^p$ contains dense subset and is thus dense in $l^q$. %https://math.stackexchange.com/questions/2157682/
PREVIOUSSheet 1 Q8
NEXTSheet2 Q6