Sheet 1 Q8

 
Find explicitly the projective transformation of $β„‚β„™^2$ that takes the points $[1,0,0],[1,1,0],[0,0,1]$ and $[0,1,1]$ to $[1,2,3],[1,0,1],[0,1,0]$ and $[1,0,-1]$ respectively. Solution. First we scale the points to satisfy linear relations \begin{gather*}[1,0,0]-[1,1,0]-[0,0,1]+[0,1,1]=0\cr[1,2,3]-2[1,0,1]-2[0,1,0]+[1,0,-1]=0\end{gather*} To find a linear map $T\colonβ„‚^2β†’β„‚^2$ \begin{align*} T(1,0,0)&=(1,2,3)\\ T(-1,-1,0)&=(-2,0,-2)\\ T(0,0,-1)&=(0,-2,0) \end{align*} by row reduction \begin{align*} T(1,0,0)&=(1,2,3)\\ T(0,1,0)&=(1,-2,-1)\\ T(0,0,1)&=(0,2,0) \end{align*} so the projective transformation $\tilde{T}$ induced by the linear map \[T(x,y,z)=(x+y,2x-2y+2z,3x-y)\] satisfies required conditions. Remark. For $T:V_1β†’V_2$, dual map $T^*:V_2^*β†’V_1^*$