Abel's Test

 
Abelโ€™s Test | Abelโ€™s Test, Uniform Version

This note is an exposition of Abelโ€™s test on convergence of series.

Theorem 1. Suppose โˆ‘ 1 โˆž b n converges and that {an} is a monotone bounded sequence. Then โˆ‘ 1 โˆž a n b n converges.

Proof. Let b0โ€„=โ€„0, B N = โˆ‘ k = 0 N b k . Then bnโ€„=โ€„Bnโ€…โˆ’โ€…Bnโ€…โˆ’โ€…1,โ€†nโ€„โ‰ฅโ€„1, hence โˆ‘ k = 1 N a k b k = โˆ‘ k = 1 N a k ( B k โˆ’ B k โˆ’ 1 ) = B 1 ( a 1 โˆ’ a 2 ) + B 2 ( a 2 โˆ’ a 3 ) + โ€ฆ B N โˆ’ 1 ( a N โˆ’ 1 โˆ’ a N ) + a N B N = โˆ‘ k = 1 N โˆ’ 1 B k ( a k โˆ’ a k + 1 ) + a N B N Since {an} is monotone and bounded it converges; and {BN} converges since โˆ‘bn converges. Hence aNBN converges. We estimate โˆ‘Bk(akโˆ’ak+1). Since โˆ‘bn converges, |โˆ‘bn|โ€„โ‰คโ€„M for some M. Using the fact that {an} is montone we get โˆ‘ 1 N | B k ( a k โˆ’ a k + 1 ) | โ‰ค M โˆ‘ 1 N | a k โˆ’ a k + 1 | = M | a 1 โˆ’ a N + 1 | โ†’ M | a 1 โˆ’ a | , where akโ€„โ†’โ€„a. Hence โˆ‘Bk(akโ€…โˆ’โ€…ak+1) converges absolutely.

โ–ฎ

Example 1. Suppose โˆ‘an converges. Then โˆ‘n1/nan converges and โˆ‘(1+1/n)nan converges.

Proof. Itโ€™s easy to prove that f(x)โ€„=โ€„x1/x is decreasing for xโ€„>โ€„e, by computing the derivative of (log(x))/x. Here is the proof that (1+1/n)n increases with n.

( 1 + 1 n ) n = 1 + 1 + โ‹ฏ + ( n p ) 1 n p + โ‹ฏ + 1 n n = 1 + โ‹ฏ + ( 1 โˆ’ 1 n ) โ€ฆ ( 1 โˆ’ p โˆ’ 1 n ) 1 p ! + โ‹ฏ + 1 n n ( 1 + 1 n + 1 ) n + 1 = 1 + โ‹ฏ + ( 1 โˆ’ 1 n + 1 ) โ€ฆ ( 1 โˆ’ p โˆ’ 1 n + 1 ) 1 p ! + โ‹ฏ + 1 ( n + 1 ) n + 1 . The last sum has one more (positive) term than the preceding term and the pth term of the last sum is larger than the preceding pth term since each factor is larger (subtract k/(n+1) from 1 as opposed to subtracting k/n). Hence ( 1 + 1 n + 1 ) n + 1 > ( 1 + 1 n ) n . Itโ€™s easy check using Lโ€™Hopitalโ€™s rule that (1+1/x)xโ€„โ†’โ€„e as xโ€„โ†’โ€„โˆž, so the sequence (1+1/n)n is monotone and bounded.

โ–ฎ