Abel Transform

 
对数列 { a n } , { b n } ,记 S k = i = 1 k a i ,   k = 1 , 2 , , n ,   S 0 = 0 , 则有 k = 1 n a k b k = S n b n + k = 1 n 1 S k ( b k b k + 1 ) .
上式称为阿贝尔变换,或分部求和公式(类似于分部积分),它可用于证明无穷级数的阿贝尔判别法. 证明:由 a k = S k S k 1 k = 1 n a k b k = k = 1 n ( S k S k 1 ) b k = k = 1 n S k b k k = 1 n S k 1 b k = k = 1 n S k b k k = 1 n 1 S k b k + 1 = S n b n + k = 1 n 1 S k ( b k b k + 1 ) 应用阿贝尔变换及其证明方法,可较好地解决一些较复杂的、带约束条件的、涉及两个数列的对应项之积的和的上下界估计问题.
例1 已知 x i 𝐑 ,   i = 1 , 2 , , n ,   n 2 ,满足 i = 1 n | x i | = 1 , i = 1 n x i = 0 .
证明: | i = 1 n x i i | 1 2 1 2 n .
讲解:记诸 x i 中全体非负数之和为A,全体负数之和为B,则由条件有A-B=1,且A+B=0.故必有A= 1 2 ,B= 1 2 .
S k = i = 1 k x i ,   k = 1 , 2 , , n ,   S 0 = 0 , | S k | 1 2 , k = 1 , 2 , , n .
由阿贝尔变换有 i = 1 n x i i = 1 n S n + i = 1 n 1 S i ( 1 i 1 i + 1 ) = i = 1 n 1 S i ( 1 i 1 i + 1 ) 从而, | i = 1 n x i i | i = 1 n 1 | S i | ( 1 i 1 i + 1 ) 1 2 i = 1 n 1 ( 1 i 1 i + 1 ) = 1 2 1 2 n
例2 设 x 𝐑 , n 𝐍 .求证 i = 1 n [ i x ] i [ n x ] .这里 [ x ] 表示不超过 x 的最大整数.
讲解:从求证式的左边看,似可用 i = 1 n [ i x ] i = 1 n i = 1 n [ i x ] + k = 1 n 1 ( 1 k 1 k + 1 ) i = 1 k [ i x ] .但以下难以进行,关键是 i = 1 n [ i x ] 与结论的关系不明显.转而用 i = 1 n [ i x ] = i = 1 n i [ i x ] i = n i = 1 n [ i x ] i + k = 1 n 1 ( 1 ) i = 1 k [ i x ] i 可推出 n i = 1 n [ i x ] i = i = 1 n [ i x ] + k = 1 n 1 ( i = 1 k [ i x ] i ) 便为用数学归纳法证明此题扫清了障碍.最后的证明还要用到关系式 [ x ] + [ y ] [ x + y ] .请读者自己完成.
例3 设 x i 0 ,   i = 1 , 2 , , n ,且 i = 1 n x i 2 + 2 1 k < j n k j x k x j = 1 .求 i = 1 n x i 的最大值和最小值.
讲解:易得 i = 1 n x i 的最小值为1(诸 x i 中一个为1,而其余全为零时达到).为求最大值,注意到 1 = i = 1 n i ( x i i ) 2 + 2 1 k < j n k ( x k k x j j ) = k = 1 n k x k k ( x k k + 2 i = k + 1 n x i i ) = k = 1 n k x k k ( i = k n x i i + i = k + 1 n x i i ) = k = 1 n k ( i = k n x i i i = k + 1 n x i i ) ( i = k n x i i + i = k + 1 n x i i ) 若令 y i = j = i n x j j , i = 1 , 2 , , n ,则诸 y i 0 .逆用阿贝尔变换的证明方法可将条件化为 i = 1 n y i 2 = 1 .再由 y i = j = i n x j j , i = 1 , 2 , , n x n = n y n , x i = i ( y i y i + 1 ) , i = 1 , 2 , , n 1 .
y n + 1 = 0 ,故有 i = 1 n x i = i = 1 n i ( y i y i + 1 ) = i = 1 n ( i i 1 ) y i .利用柯西不等式可得 i = 1 n x i 的最大值为 i = 1 n ( i i 1 ) 2 (当 x i = 2 i i 2 + i i 2 i i = 1 n ( i i 1 ) 2 , i = 1 , 2 , , n 时取到).
例4 实数 x 1 , x 2 , , x 2001 满足 k = 1 2000 | x k x k + 1 | = 2001 ,令 y k = 1 k ( x 1 + x 2 + + x k ) , k = 1 , 2 , , 2001 .求 k = 1 2000 | y k y k + 1 | 的最大可能值.
讲解:由于不知 x k x k + 1 的大小关系,可将差 x k x k + 1 视为整体,将条件 k = 1 2000 | x k x k + 1 | = 2001 视为关于 x k x k + 1 的一个约束关系.作代换 a 0 = x 1 , a k = x k + 1 x k , k = 1 , 2 , , 2000 ,则 x 1 = a 0 , x k = i = 0 k 1 a i , k = 2 , 3 , , 2001 ,条件即为 k = 1 2000 | a k | = 2001 .此时 y k = 1 k [ a 0 + ( a 0 + a 1 ) + + i = 0 k 1 a i ] = 1 k [ k a 0 + ( k 1 ) a 1 + + a k 1 ] y k + 1 = 1 k + 1 [ ( k + 1 ) a 0 + k a 1 + + 2 a k 1 + a k ] | y k y k + 1 | = 1 k ( k + 1 ) | a 1 2 a 2 k a k | 1 k ( k + 1 ) ( | a 1 | + 2 | a 2 | + + k | a k | ) A k = | a 1 | + 2 | a 2 | + + k | a k | , k = 1 , 2 , , 2000 , A 0 = 0 , k = 1 2000 | y k y k + 1 | k = 1 2000 ( 1 k 1 k + 1 ) A k = k = 1 2000 1 k ( A k A k 1 ) 1 2001 A 2000 = k = 1 2000 | a k | 1 2001 A 2000 A 2000 = | a 1 | + 2 | a 2 | + + 2000 · | a 2000 | k = 1 2000 | a k | ,故 k = 1 2000 | y k y k + 1 | k = 1 2000 | a k | 1 2001 k = 1 2000 | a k | = 2000 2001 k = 1 2000 | a k | = 2000 由上述过程知,当且仅当 | a 1 | = 2001 , a 2 = a 3 = = a 2000 = 0 时等号成立.故所求最大值为2000.
例5 已知 a 1 , a 2 , , a n b 1 , b 2 , , b n 为实数.证明:使得对任何满足 x 1 x 2 x n 的实数,不等式 i = 1 n a i x i i = 1 n b i x i 恒成立的充要条件是 i = 1 k a i i = 1 k b i , k = 1 , 2 , , n 1 ,且 i = 1 n a i = i = 1 n b i .
讲解:记 S k = i = 1 k a i , T k = i = 1 k b i , S 0 = T 0 = 0 ,则条件 i = 1 n a i x i i = 1 n b i x i 可化为 (1) S n x n + k = 1 n 1 S k ( x k x k + 1 ) T n x n + k = 1 n 1 T k ( x k x k + 1 ) (1) x 1 = x 2 = = x n ,有 S n x n T n x n ,由 x n 的任意性知必有 S n = T n .
x 1 = x 2 = = x k = 1 ( 1 k n 1 ) , x k + 1 = = x n = 0 ,可得 i = 1 k a i i = 1 k b i .必要性得证.
充分性只要求在“ S n = T n ,且 S k T k ( 1 k n 1 ) ”下证明式(1)成立.
例6 给定 c ( 1 2 , 1 ) 求最小常数 M 使得对任意整数 n 2 及实数 0 < a 1 a 2 a n ,只要满足 (1) 1 n k = 1 n k a k = c k = 1 n a k (1) 总有 k = 1 n a k M k = 1 m a k ,其中 m = [ c n ] 表示不超过 c n 的最大整数.
讲解:应先据式(1)用特殊值法求出 M 的一个下界,最简单的方法是取诸 a k 全相等.但由于 c 事先给定,诸 a k 全相等时不一定能满足条件,因而先退一步,令 a 1 = = a m ,而 a m = = a n ,不妨设 a 1 = 1 ,代入式(1)有 m ( m + 1 ) 2 + [ n ( n + 1 ) 2 m ( m + 1 ) 2 ] a m + 1 = c n [ m + ( n m ) a m + 1 ] 由此可解出 a m + 1 = m ( 2 c n m 1 ) ( n m ) ( n + m + 1 2 c n ) (注意到 c n m 1 ,且 c n < m + 1 n ).将取定的这组正数代入 k = 1 n a k M k = 1 m a k 中,有 m + ( n m ) m ( 2 c n m 1 ) ( n m ) ( n + m + 1 2 c n ) m M M 1 + 2 c n m 1 n + m + 1 2 c n = n n + m + 1 2 c n n n + 1 c n = 1 1 c + 1 n . n M 1 1 c .欲证所求最小常数恰为 1 1 c ,应证对满足式(1)的任何递增数列 { a n } ,恒有 (2) k = 1 n a k 1 1 c k = 1 m a k (2) S 0 = 0 , S k = i = 1 k a i , k = 1 , 2 , , n ,由阿贝尔变换得 (3) ( n c n ) S n = S 1 + S 2 + + S n 1 (3) 现要将 S 1 , S 2 , , S n 的关系式(3)变为只含 S m S n 的关系式(2),应设法用 S m S n 来表示诸 S k ,或限制其范围.显然 k m 时,有 S k S m ,但若将 S 1 , S 2 , , S m 1 都直接放大到 S m 就可能过头了,根本不需要 { a n } 的递增条件.而由 { a n } 的递增条件,当 k m 时,前 k 个数的平均数不超过前 m 个数的平均数,即 S k k m S m .
m + 1 k n 时, S k = S m + a m + 1 + + a k .同样由 { a n } 的递增条件, k m 个数 a m + 1 , , a k 的平均数不超过 n m 个数 a m + 1 , , a n 的平均数.于是, m + 1 k n 时,有 S k S m + k m n m ( a m + 1 + + a n ) = n k n m S m + k m n m S n 式(3)化为 ( n c n ) S n 1 + + m m S m + ( n m 1 ) + + 1 n m S m + 1 + + ( n 1 m ) n m S n = n 2 S m + n m 1 2 S n S n n n + 1 + m 2 c n S m < n n c n S m = 1 1 c S m

练习题

  1. (阿贝尔不等式)设 a k , b k 𝐑 ( k = 1 , 2 , , n ) , b 1 b 2 b n 0 ,对 k = 1 , 2 , , n , S k = i = 1 k a i , M = max 1 k < n S k , m = min 1 < k < n S k . 则有 m b 1 k = 1 n a k b k M b 1
  2. 已知 a 1 , a 2 , , a n 为任意两两各不相同的正整数.求证:对任意正整数 n ,下列不等式成立: k = 1 n a k k 2 k = 1 n 1 k (提示:由阿贝尔变换得 k = 1 n a k k 2 = 1 n 2 S n + k = 1 n 1 [ 1 k 2 1 ( k + 1 ) 2 ] S k ,其中 S k = i = 1 k a i i = 1 k i .)
  3. (钟开莱不等式)设 a i , b i 𝐑 ( k = 1 , 2 , , n ) , a 1 a 2 a n 0 ,对 k = 1 , 2 , , n 恒有 i = 1 k a i i = 1 k b i .则必有 i = 1 n a i 2 i = 1 n b i 2 .
    (提示:先用阿贝尔变换证明 i = 1 n a i 2 i = 1 n a i b i ,再用柯西不等式推出结论.)
  4. 已知 a 1 , a 2 , , a n , 是实数列,满足 a i + j a i + a j ( i , j 𝐍 ) [这称为Subadditivity],证明:
    (1) a n 2 n 1 i = 1 n 1 a i ( n 2 , n 𝐍 ) ;
    (2) a 1 + a 2 2 + a 3 3 + + a n n a n
    (提示:(1) 2 i = 1 n 1 a i = i = 1 n 1 ( a i + a n i ) ( n 1 ) a n ;(2)仿(1)得 a k 2 k 1 i = 1 k 1 a i 再对求证式左边用阿贝尔变换.)
  5. a 1 a 2 a n 0 , b 1 a 1 , b 1 b 2 a 1 a 2 , , b 1 b 2 b n a 1 a 2 a n .求证 b 1 + b 2 + + b n a 1 + a 2 + + a n .
    (提示:令 c i = b i a i ( 1 i n ) ,结论转化为 i = 1 n ( c i 1 ) a i 0 ,用阿贝尔变换及均值不等式可得).
应用阿贝尔变换解竞赛题. 方廷刚.《中等数学》2003