$\DeclareMathOperator{\Ext}{Ext}\DeclareMathOperator{\Hom}{Hom}
Given $R$-modules $A,B,C$ with projective resolutions $P→A,Q→B,T→C$, we see that
\[\operatorname{Ext}^i_R(A,B)=H^i\operatorname{Tot}^Π\Hom_R(P,Q)=\text{chain homotopy classes of chain maps }P→Q[i]\]
also
\[\operatorname{Ext}^j_R(B,C)=H^j\operatorname{Tot}^Π_R\Hom_R(Q,T)=\text{chain homotopy classes of chain maps }Q→T[j]\]
Note: shift by \(i\): $\Hom(Q,T[j])\overset\sim\to\Hom(Q[i],T[i+j])$ preserves chain homotopy
\begin{tikzcd}P \ar[dr]\ar[rr] & & T[i+j]\\
&Q[i]\ar[ur]\end{tikzcd}gives a map $\operatorname{Ext}^i_R(A,B)×\operatorname{Ext}^j_R(B,C)→\operatorname{Ext}_R^{i+j}(A,C)$ is associative and biadditive.
\(D^-(R\text{-mod}) \simeq K^-(\text{Projective }R\text{-mod})\)
\begin{align*}
& \Ext_R^•(A, A)=\oplus_i\Ext^i_R(A,A) \text{ is a graded ring. } \\
& \Ext^i(A, A) \times \Ext^j(A, A) \to \Ext^{i+j}(A, A) \\
\end{align*}
For any $B$, $\Ext^•(A, B)=\oplus_i\Ext_R^i(A, B)$ is a graded module over this ring.
PREVIOUSWeingarten Equations
NEXTCompute Ext