Sheet2 Q5

 
Prove that $\mathrm{e}^x$ is not in $š’®'(ā„)$, but that $\mathrm{e}^{x+\mathrm{i} \mathrm{e}^x}$ is in $š’®'(ā„)$ provided we define \[ ⟨\mathrm{e}^{x+\mathrm{ie}^x}, Ļ•āŸ©=\lim _{j →+āˆž} ∫_{-āˆž}^j \mathrm{e}^{x+\mathrm{ie}^x} Ļ•(x) \mathrm{d} x \] for $Ļ• ∈ š’®(ā„)$. Solution. To prove $\mathrm{e}^x$ is not in $š’®'(ā„)$, there exists $Ļ†āˆˆš’®(ā„)$ such that \[∫_{-āˆž}^{+āˆž} φ(x)\mathrm{e}^x\,dx = +āˆž.\] {\color{gray}For example $φ(x) = \exp(-\sqrt{1+x^2})$.} Define $χ_jā‰Ļ*1_{(0,j+1)}$. Then $χ_j∈C^āˆž$, $1_{(1,j)}≤χ_j≤1_{(-1,j+2)}$ so $χ_jāˆˆš’Ÿ$. Take $Ļ•_j=χ_je_{-1}āˆˆš’Ÿ$ and note $Ļ•_j→ϕ=χe_{-1}$ in $š’®$ where $χ=ρ*1_{(0,āˆž)}$. By $š’®$-continuity of $E$, \[⟨E,Ļ•āŸ©=\lim_{jā†’āˆž}⟨E,Ļ•_j⟩=\lim_{jā†’āˆž}∫e^xχ_je^{-x}dx=āˆž\text{āŒ}\] Clearly $e^{x+ie^x}āˆˆš’Ÿ'∩C^āˆž$ and $(e^{ie^x})'=e^{ie^x}ie^x=ie^{x+ie^x}$ so $(\underbrace{-ie^{ie^x}}_{u(x)})'=e^{}$ Then $u∈C^āˆž$ and $|u(x)|=1$ therefore $u'āˆˆš’®$.