Prove that $\mathrm{e}^x$ is not in $š®'(ā)$, but that $\mathrm{e}^{x+\mathrm{i} \mathrm{e}^x}$ is in $š®'(ā)$ provided we define
\[
āØ\mathrm{e}^{x+\mathrm{ie}^x}, Ļā©=\lim _{j ā+ā} ā«_{-ā}^j \mathrm{e}^{x+\mathrm{ie}^x} Ļ(x) \mathrm{d} x
\]
for $Ļ ā š®(ā)$.
Solution.
To prove $\mathrm{e}^x$ is not in $š®'(ā)$, there exists $Ļāš®(ā)$ such that \[ā«_{-ā}^{+ā} Ļ(x)\mathrm{e}^x\,dx = +ā.\]
{\color{gray}For example $Ļ(x) = \exp(-\sqrt{1+x^2})$.}
Define $Ļ_jāĻ*1_{(0,j+1)}$. Then $Ļ_jāC^ā$, $1_{(1,j)}ā¤Ļ_jā¤1_{(-1,j+2)}$ so $Ļ_jāš$. Take $Ļ_j=Ļ_je_{-1}āš$ and note $Ļ_jāĻ=Ļe_{-1}$ in $š®$ where $Ļ=Ļ*1_{(0,ā)}$. By $š®$-continuity of $E$,
\[āØE,Ļā©=\lim_{jāā}āØE,Ļ_jā©=\lim_{jāā}ā«e^xĻ_je^{-x}dx=ā\text{ā}\]
Clearly $e^{x+ie^x}āš'ā©C^ā$ and $(e^{ie^x})'=e^{ie^x}ie^x=ie^{x+ie^x}$
so $(\underbrace{-ie^{ie^x}}_{u(x)})'=e^{}$
Then $uāC^ā$ and $|u(x)|=1$ therefore $u'āš®$.
PREVIOUSSheet2 B1 Fourier Series
NEXTTriangle Groups