Sheet2 Q3

 
$\DeclareMathOperator{\sgn}{sgn}\DeclareMathOperator{\sinc}{sinc}\DeclareMathOperator{\fp}{fp}\DeclareMathOperator{\pv}{pv}$For each of the following functions from $ā„$ into $ā„‚$ calculate the Fourier transform: (i) $\cos , \sin , \cos^2, \cos^k$ for $k ∈ ā„•$. Solution. Use $\hat1=2πΓ_0$. By translation rule $\widehat{e_{š—‚h}}=Ļ„_{-h}(2πΓ_0)=2πΓ_h$ \[ \widehat{š–¾^{š—‚x}}=2πΓ_1\\ \widehat{š–¾^{-š—‚x}}=2πΓ_{-1} \] so \begin{align*} \widehat{\cos}&=πΓ_1+πΓ_{-1}\\ \widehat{\sin}&=\fracĻ€š—‚(Ī“_1-Ī“_{-1})=š—‚Ļ€(Ī“_{-1}-Ī“_1)\\ \cos^2(x)&=\frac12+\frac14(š–¾^{2š—‚x}+š–¾^{-2š—‚x})\\ \widehat{\cos^2}&=πΓ_0+\fracĻ€2(Ī“_2+Ī“_{-2})\\ \cos^k(x)&=\frac1{2^k}\sum_{n=0}^{k}\binom{k}{n}š–¾^{š—‚nx}š–¾^{-š—‚(k-n)x}\\ \widehat{\cos^k}&=\frac{Ļ€}{2^{k-1}}\sum_{n=0}^{k}\binom{k}{n}Ī“_{k-2n} \end{align*} (ii) $\sinc$ Solution. $\widehat{1_{[-1,1]}}=2\sinc$. By Fourier inversion $\widehat{\sinc}=2π⋅\frac12\widetilde{1_{[-1,1]}}=Ļ€1_{[-1,1]}$. (iii) $H$ by calculating first the Fourier transform of $H^ε(x)=š–¾^{-εx}H(x)$ for $ε>0$ ($H$ is Heaviside's function). Solution. \[\int_ā„H^ε(x)š–¾^{-š—‚xξ}š–½Ī¾=\int_{0}^{āˆž}š–¾^{-(š—‚Ī¾+ε)x}š–½Ī¾=\frac1š—‚\lim_{xā†’āˆž}\frac{1-š–¾^{-(š—‚Ī¾+ε)x}}{ξ-š—‚Īµ}→-š—‚(ξ-š—‚0)^{-1}\] To prove $H^ε→H$ as $ε→0$ in $š’®'(ā„)$, \[|T_{H^ε}(Ļ•)-T_H(Ļ•)|=\left|\int_{-āˆž}^{āˆž}(H^ε(x)-H(x))Ļ•(x)š–½x\right|≤\int_{0}^{āˆž}|š–¾^{-εx}-1||Ļ•(x)|š–½x→0\] so by $š’®'$-continuity of $ℱ$, $\hat{H}(ξ)=\lim_{ε→0^+}\widehat{H^ε}(ξ)=-š—‚(ξ-š—‚0)^{-1}$. āˆŽ Deduce that \[ (ξ-š—‚ 0)^{-1}=\pv\left(\frac{1}{ξ}\right)+Ļ€ š—‚ Ī“_0, \] where the distribution on the left-hand side again was defined on B4.3 Problem Sheet 4. In both deductions you should carefully explain why the considered distributions are tempered. Solution. By lecture $\hat{H}(ξ)=-š—‚\pv(\frac1{ξ})+Ļ€ Ī“_0(ξ)$, so the identity holds. $(ξ-š—‚ 0)^{-1}$ is compactly supported, so it is tempered, since $ℰ′(ā„)āŠ‚š’®'(ā„)$. āˆŽ (iv) $x H(x)=x^+,|x|, \sin |x|$. Solution. By differentiation rule $\widehat{xH}(ξ)=š—‚\hat{H}'(ξ)=-\fp(\frac1{ξ^2})+š—‚Ļ€ Ī“'_0(ξ)$ $|x|=x^++(-x)^+\implies\widehat{|x|}(ξ)=-2\fp(\frac1{ξ^2})$ Using $\sin|x|=\sgn(x)\sin(x)$, by translation rule $\widehat{\sin|x|}=\frac{1}{2š—‚}(Ļ„_{-1}\widehat{\sgn}-Ļ„_1\widehat{\sgn})$ Here $\widehat{\sgn}=\hat H-\hat{\tilde{H}}=\hat H-\tilde{\hat{H}}=-2š—‚\pv(\frac1ξ)$ $\implies\widehat{\sin|x|}=-Ļ„_{-1}\pv(\frac1ξ)+Ļ„_1\pv(\frac1ξ)=\pv(\frac1{ξ+1})-\pv(\frac1{ξ-1})$ āˆŽ Deduce that \[ ℱ_{x → ξ}\left(\fp\left(\frac{1}{x^2}\right)\right)=-Ļ€|ξ|, \] where the finite part distribution was defined on B4.3 Sheet 4. Solution. By Fourier inversion, $\widehat{|x|}(ξ)=-2\fp(\frac1{ξ^2})\impliesℱ_{x → ξ}\left(\fp\left(\frac{1}{x^2}\right)\right)=2Ļ€\frac1{-2}|-ξ|=-Ļ€|ξ|$ $\fp\left(\frac{1}{x^2}\right)$ is compactly supported, so it is tempered, since $ℰ′(ā„)āŠ‚š’®'(ā„)$.