$\DeclareMathOperator{\sgn}{sgn}\DeclareMathOperator{\sinc}{sinc}\DeclareMathOperator{\fp}{fp}\DeclareMathOperator{\pv}{pv}$For each of the following functions from $ā$ into $ā$ calculate the Fourier transform:
(i) $\cos , \sin , \cos^2, \cos^k$ for $k ā ā$.
Solution. Use $\hat1=2ĻĪ“_0$. By translation rule $\widehat{e_{šh}}=Ļ_{-h}(2ĻĪ“_0)=2ĻĪ“_h$
\[
\widehat{š¾^{šx}}=2ĻĪ“_1\\
\widehat{š¾^{-šx}}=2ĻĪ“_{-1}
\]
so
\begin{align*}
\widehat{\cos}&=ĻĪ“_1+ĻĪ“_{-1}\\
\widehat{\sin}&=\fracĻš(Ī“_1-Ī“_{-1})=šĻ(Ī“_{-1}-Ī“_1)\\
\cos^2(x)&=\frac12+\frac14(š¾^{2šx}+š¾^{-2šx})\\
\widehat{\cos^2}&=ĻĪ“_0+\fracĻ2(Ī“_2+Ī“_{-2})\\
\cos^k(x)&=\frac1{2^k}\sum_{n=0}^{k}\binom{k}{n}š¾^{šnx}š¾^{-š(k-n)x}\\
\widehat{\cos^k}&=\frac{Ļ}{2^{k-1}}\sum_{n=0}^{k}\binom{k}{n}Ī“_{k-2n}
\end{align*}
(ii) $\sinc$
Solution. $\widehat{1_{[-1,1]}}=2\sinc$. By Fourier inversion $\widehat{\sinc}=2Ļā
\frac12\widetilde{1_{[-1,1]}}=Ļ1_{[-1,1]}$.
(iii) $H$ by calculating first the Fourier transform of $H^ε(x)=š¾^{-εx}H(x)$ for $ε>0$ ($H$ is Heaviside's function).
Solution.
\[\int_āH^ε(x)š¾^{-šxξ}š½Ī¾=\int_{0}^{ā}š¾^{-(šĪ¾+ε)x}š½Ī¾=\frac1š\lim_{xāā}\frac{1-š¾^{-(šĪ¾+ε)x}}{ξ-šĪµ}ā-š(ξ-š0)^{-1}\]
To prove $H^εāH$ as $εā0$ in $š®'(ā)$,
\[|T_{H^ε}(Ļ)-T_H(Ļ)|=\left|\int_{-ā}^{ā}(H^ε(x)-H(x))Ļ(x)š½x\right|ā¤\int_{0}^{ā}|š¾^{-εx}-1||Ļ(x)|š½xā0\]
so by $š®'$-continuity of $ā±$, $\hat{H}(ξ)=\lim_{εā0^+}\widehat{H^ε}(ξ)=-š(ξ-š0)^{-1}$.
ā
Deduce that
\[
(ξ-š 0)^{-1}=\pv\left(\frac{1}{ξ}\right)+Ļ š Ī“_0,
\]
where the distribution on the left-hand side again was defined on B4.3 Problem Sheet 4. In both deductions you should carefully explain why the considered distributions are tempered.
Solution.
By lecture $\hat{H}(ξ)=-š\pv(\frac1{ξ})+Ļ Ī“_0(ξ)$, so the identity holds.
$(ξ-š 0)^{-1}$ is compactly supported, so it is tempered, since $ā°ā²(ā)āš®'(ā)$.
ā
(iv) $x H(x)=x^+,|x|, \sin |x|$.
Solution. By differentiation rule $\widehat{xH}(ξ)=š\hat{H}'(ξ)=-\fp(\frac1{ξ^2})+šĻ Ī“'_0(ξ)$
$|x|=x^++(-x)^+\implies\widehat{|x|}(ξ)=-2\fp(\frac1{ξ^2})$
Using $\sin|x|=\sgn(x)\sin(x)$, by translation rule
$\widehat{\sin|x|}=\frac{1}{2š}(Ļ_{-1}\widehat{\sgn}-Ļ_1\widehat{\sgn})$
Here $\widehat{\sgn}=\hat H-\hat{\tilde{H}}=\hat H-\tilde{\hat{H}}=-2š\pv(\frac1ξ)$
$\implies\widehat{\sin|x|}=-Ļ_{-1}\pv(\frac1ξ)+Ļ_1\pv(\frac1ξ)=\pv(\frac1{ξ+1})-\pv(\frac1{ξ-1})$
ā
Deduce that
\[
ā±_{x ā ξ}\left(\fp\left(\frac{1}{x^2}\right)\right)=-Ļ|ξ|,
\]
where the finite part distribution was defined on B4.3 Sheet 4.
Solution. By Fourier inversion, $\widehat{|x|}(ξ)=-2\fp(\frac1{ξ^2})\impliesā±_{x ā ξ}\left(\fp\left(\frac{1}{x^2}\right)\right)=2Ļ\frac1{-2}|-ξ|=-Ļ|ξ|$
$\fp\left(\frac{1}{x^2}\right)$ is compactly supported, so it is tempered, since $ā°ā²(ā)āš®'(ā)$.