Let $f\colon ā ā ā$ be a measurable function satisfying $|f(x)|ā¤š¾^{-|x|}$ for almost all $x ā ā$. Prove that the Fourier transform $\hat{f}$ cannot have compact support unless $f(x)=0$ for almost all $x ā ā$.
By Differentiation Rule
\[\hat{f}'(ξ)=\int_ā-šxf(x)š¾^{-šxξ}š½x\]
so $\hat{f}$ is in $š¢^ā(ā)$. Estimate using $|f(x)|ā¤š¾^{-|x|}$
\begin{align*}
\left|\hat f^{(n)}(ξ)\right|&=\left|\int_ā(-šx)^nf(x)š¾^{-šxξ}š½x\right|\\
&ā¤\int_ā|x|^nš¾^{-|x|}š½x\\
&=2\int_0^āx^nš¾^{-x}š½x\\
&=2n!\\
ā&\frac{1}{\limsup_{nāā}|\frac{\hat f^{(n)}(ξ)}{n!}|^{\frac{1}{n}}}ā„\frac12
\end{align*}
so the Taylor series for $\hat f$ has a radius of convergence of at least $\frac12$ everywhere. Thus, it is real analytic over all $ā$, by identity theorem cannot have compact support unless it is identically $0$.
Alternate proof:
By contradiction $ā
ā\operatorname{supp}\hat{f}āā$ so the boundary $ā(\operatorname{supp}\hat{f})ā ā
$. Select $ξ_0āā(\operatorname{supp}\hat{f})$. Then $\hat{f}^{(k)}(ξ_0)=0āk$, so by Taylor expansion with Lagrange remainder
\[\hat{f}(ξ)=\sum_{k=0}^{n}\frac{\cancelto0{\hat{f}^{(k)}(ξ_0)}}{k!}(ξ-ξ_0)^k+\frac{\hat{f}^{(n+1)}(θ)}{(n+1)!}(ξ-ξ_0)^{(n+1)}\]
where $θ=θ_{n,ξ}$ lies between $ξ$ and $ξ_0$,
\[|\hat{f}(ξ)|=\frac{|\hat{f}^{(n+1)}(Īø)|}{(n+1)!}|ξ-ξ_0|^{n+1}ā¤2|ξ-ξ_0|^{n+1}\]
If $|ξ-ξ_0|<1$ then taking $nā+ā$ yields $\tilde{f}(ξ)=0$. contradicting $ξ_0āā(\operatorname{supp}\tilde{f})$.