Sheet 1 Q5

 
Let $f\colon ā„ → ā„‚$ be a measurable function satisfying $|f(x)|ā‰¤š–¾^{-|x|}$ for almost all $x ∈ ā„$. Prove that the Fourier transform $\hat{f}$ cannot have compact support unless $f(x)=0$ for almost all $x ∈ ā„$. By Differentiation Rule \[\hat{f}'(ξ)=\int_ā„-š—‚xf(x)š–¾^{-š—‚xξ}š–½x\] so $\hat{f}$ is in $š–¢^āˆž(ā„)$. Estimate using $|f(x)|ā‰¤š–¾^{-|x|}$ \begin{align*} \left|\hat f^{(n)}(ξ)\right|&=\left|\int_ā„(-š—‚x)^nf(x)š–¾^{-š—‚xξ}š–½x\right|\\ &≤\int_ā„|x|^nš–¾^{-|x|}š–½x\\ &=2\int_0^āˆžx^nš–¾^{-x}š–½x\\ &=2n!\\ ⇒&\frac{1}{\limsup_{nā†’āˆž}|\frac{\hat f^{(n)}(ξ)}{n!}|^{\frac{1}{n}}}≄\frac12 \end{align*} so the Taylor series for $\hat f$ has a radius of convergence of at least $\frac12$ everywhere. Thus, it is real analytic over all $ā„$, by identity theorem cannot have compact support unless it is identically $0$. Alternate proof: By contradiction $āˆ…āŠŠ\operatorname{supp}\hat{f}āŠŠā„$ so the boundary $āˆ‚(\operatorname{supp}\hat{f})ā‰ āˆ…$. Select $ξ_0āˆˆāˆ‚(\operatorname{supp}\hat{f})$. Then $\hat{f}^{(k)}(ξ_0)=0āˆ€k$, so by Taylor expansion with Lagrange remainder \[\hat{f}(ξ)=\sum_{k=0}^{n}\frac{\cancelto0{\hat{f}^{(k)}(ξ_0)}}{k!}(ξ-ξ_0)^k+\frac{\hat{f}^{(n+1)}(Īø)}{(n+1)!}(ξ-ξ_0)^{(n+1)}\] where $Īø=Īø_{n,ξ}$ lies between $ξ$ and $ξ_0$, \[|\hat{f}(ξ)|=\frac{|\hat{f}^{(n+1)}(Īø)|}{(n+1)!}|ξ-ξ_0|^{n+1}≤2|ξ-ξ_0|^{n+1}\] If $|ξ-ξ_0|<1$ then taking $n→+āˆž$ yields $\tilde{f}(ξ)=0$. contradicting $ξ_0āˆˆāˆ‚(\operatorname{supp}\tilde{f})$.