Consider the following four functions on $โ$:
\[f_1(x)=๐พ^{-x^2+2 x}, โ f_2(x)=๐พ^{-x} H(x), โ f_3(x)=๐พ^{-|x|}, โ f_4(x)=\frac{1}{x^2+1},\]
where $H$ is Heavisideโs function.
(a) Verify that these functions all belong to $๐ซ^1(โ)$. Which of them belong to $๐ซ^2(โ)$ and which to $๐ฎ(โ)$?
\[\begin{array}{ll}\int_โ{|f_1|}=\int_โ๐พ^{-(x-1)^2+1}๐ฝx=๐พ\sqrtฯ,&f_1โ๐ซ^1(โ)\\\int_โ{|f_1|}^2=\int_โ๐พ^{-(\sqrt2x-\sqrt2)^2+2}๐ฝx=๐พ^2\sqrt{ฯ/2},&f_1โ๐ซ^2(โ)\\\int_โ{|f_2|}=\int_0^โ๐พ^{-x}๐ฝx=1,&f_2โ๐ซ^1(โ)\\\int_โ{|f_2|}^2=\int_0^โ๐พ^{-2x}๐ฝx=1/2,&f_2โ๐ซ^2(โ)\\\int_โ{|f_3|}=2\int_0^โ๐พ^{-x}๐ฝx=2,&f_3โ๐ซ^1(โ)\\\int_โ{|f_3|}^2=2\int_0^โ๐พ^{-2x}๐ฝx=1,&f_3โ๐ซ^2(โ)\\\int_โ{|f_4|}=\int_โ\frac1{x^2+1}๐ฝx=\left[\tan^{-1}x\right]_{-โ}^โ=ฯ,&f_4โ๐ซ^1(โ)\\\int_โ{|f_4|}^2=\int_โ\frac1{(x^2+1)^2}๐ฝx=\frac12\left[\frac{x}{1+x^2} +\tan^{-1}x\right]_{-โ}^โ=\frac{ฯ}2,&f_4โ๐ซ^2(โ)\end{array}\]
$f_1โ๐ข^โ$ and $(๐พ^{-x^2})^{(n)}=p_n(x)๐พ^{-x^2}$ for some polynomial $p_n(x)$.
Since $๐พ^{x^2}=\sum_{n=0}^{โ}\frac{x^{2n}}{n!}$, for $nโฅ0$, for $xโโ$, $|x^n๐พ^{-x^2}|โค\left|\frac{x^n}{1+\frac{x^{2n}}{n!}}\right|$, so $x^n๐พ^{-x^2}$ is bounded, thus $๐พ^{-x^2}$ and all of its derivatives are rapidly decreasing, so $f_1โ๐ฎ(โ)$.
$\lim_{xโ0+}f_2(x)=1,\lim_{xโ0-}f_2(x)=0$, so $f_2โ๐ข^0$, so $f_2โ๐ฎ(โ)$.
$\lim_{xโ0+}f_3'(x)=-1,\lim_{xโ0-}f_3'(x)=1$, so $f_3โ๐ข^1$, so $f_3โ๐ฎ(โ)$.
$f_4โ๐ข^โ$ but $\lim_{xโ+โ}x^3f_4(x)=+โ$, so $f_4โ๐ฎ(โ)$.
(b) Calculate the Fourier transforms of these functions. Deduce Laplaceโs integral identity
\[โซ_0^โ \frac{\cos (x ฮพ)}{x^2+1}๐ฝx=\frac{ฯ}{2}๐พ^{-|ฮพ|}\]
valid for all $ฮพ โ โ$.
\begin{align*}\widehat{f_1}(ฮพ)&=โซ_{-โ}^{โ}๐พ^{-x^2+2x}๐พ^{-๐ฮพx}๐ฝx\\&=โซ_{-โ}^{โ}๐พ^{(1-\frac{๐ฮพ}2)^2-(x-1+\frac{๐ฮพ}2)^2}๐ฝx\\&=\sqrtฯ๐พ^{(1-\frac{๐ฮพ}2)^2}\\&=\sqrtฯ๐พ^{-\frac14(ฮพ+2๐)^2}\end{align*}
\begin{align*}\widehat{f_2}(ฮพ)&=โซ_{0}^{โ}๐พ^{-x}๐พ^{-๐ฮพx}๐ฝx\\&=-\left[\frac{๐พ^{-(1+๐ฮพ)x}}{1+๐ฮพ} \right]_{0}^{โ}\\&=\frac{1}{1+๐ฮพ}\end{align*}
\begin{align*}\widehat{f_3}(ฮพ)&=โซ_{-โ}^{โ}๐พ^{-|x|}๐พ^{-๐ฮพx}๐ฝx\\&=โซ_{-โ}^{0}๐พ^x๐พ^{-๐ฮพx}๐ฝx+โซ_{0}^{โ}๐พ^{-x}๐พ^{-๐ฮพx}๐ฝx\\&= \left[ \frac{๐พ^{(1-๐ฮพ)x}}{1-๐ฮพ} \right]_{-โ}^0-\left[\frac{๐พ^{-(1+๐ฮพ)x}}{1+๐ฮพ} \right]_{0}^{โ}\\&=\frac{1}{1-๐ฮพ}+\frac{1}{1+๐ฮพ}=\frac2{1+ฮพ^2}\end{align*}
By Fourier inversion formula,
\[๐พ^{-|ฮพ|}=\frac1{2ฯ}\int_{-โ}^{โ}\frac{2}{1+x^2}๐พ^{๐ฮพx}๐ฝx\]
changing $ฮพ$ to $-ฮพ$ we get
\[ฯ๐พ^{-|ฮพ|}=\int_{-โ}^{โ}\frac1{1+x^2}๐พ^{-๐ฮพx}๐ฝx\]
so $\widehat{f_4}(ฮพ)=ฯ๐พ^{-|ฮพ|}$, we deduce
\begin{align*}\int^\infty_0 f_4(x)\cosฮพx\,๐ฝx&=\frac{1}{2}\int^\infty_{-\infty} f_4(x)\cosฮพx\,๐ฝx\\
&=\frac{1}{2}\int^\infty_{-\infty} f_4(x)\frac{๐พ^{๐ฮพx}+๐พ^{-๐ฮพx}}{2}\,๐ฝx\\
&=\frac{1}{4}(\widehat{f_4}(-ฮพ)+\widehat{f_4}(ฮพ))=\frac12\widehat{f_4}(ฮพ)=\frac{ฯ}2๐พ^{-|ฮพ|}.\end{align*}
(c) For each of the Fourier transforms $\widehat{f_j}$, determine whether it is a function in $๐ฎ(โ)$, in $๐ซ^1(โ)$, or in $๐ซ^2(โ)$.
$|\widehat{f_1}(ฮพ)|=\sqrtฯ๐พ^{1-\frac14ฮพ^2}$, so $\widehat{f_1}โ๐ฎ(โ)$ by (a).
$|\widehat{f_2}(ฮพ)|=\frac{1}{\sqrt{1+ฮพ^2}}$, $\int_{0}^{t}|\widehat{f_2}(ฮพ)|=\sinh^{-1}tโโ$ as $tโโ$, so $\widehat{f_2}(ฮพ)โ๐ซ^1,\widehat{f_2}(ฮพ)โ๐ซ^2,\widehat{f_2}(ฮพ)โ๐ฎ(โ)$.
$|\widehat{f_3}(ฮพ)|=2f_4(ฮพ)$, so $\widehat{f_3}(ฮพ)โ๐ซ^1,\widehat{f_3}(ฮพ)โ๐ซ^2,\widehat{f_3}(ฮพ)โ๐ฎ(โ)$.
$|\widehat{f_4}(ฮพ)|=ฯf_3(ฮพ)$, so $\widehat{f_4}(ฮพ)โ๐ซ^1,\widehat{f_4}(ฮพ)โ๐ซ^2,\widehat{f_4}(ฮพ)โ๐ฎ(โ)$.