Sheet 1 Q3

 
Consider the following four functions on $โ„$: \[f_1(x)=๐–พ^{-x^2+2 x}, โ€ƒ f_2(x)=๐–พ^{-x} H(x), โ€ƒ f_3(x)=๐–พ^{-|x|}, โ€ƒ f_4(x)=\frac{1}{x^2+1},\] where $H$ is Heavisideโ€™s function. (a) Verify that these functions all belong to $๐–ซ^1(โ„)$. Which of them belong to $๐–ซ^2(โ„)$ and which to $๐’ฎ(โ„)$? \[\begin{array}{ll}\int_โ„{|f_1|}=\int_โ„๐–พ^{-(x-1)^2+1}๐–ฝx=๐–พ\sqrtฯ€,&f_1โˆˆ๐–ซ^1(โ„)\\\int_โ„{|f_1|}^2=\int_โ„๐–พ^{-(\sqrt2x-\sqrt2)^2+2}๐–ฝx=๐–พ^2\sqrt{ฯ€/2},&f_1โˆˆ๐–ซ^2(โ„)\\\int_โ„{|f_2|}=\int_0^โˆž๐–พ^{-x}๐–ฝx=1,&f_2โˆˆ๐–ซ^1(โ„)\\\int_โ„{|f_2|}^2=\int_0^โˆž๐–พ^{-2x}๐–ฝx=1/2,&f_2โˆˆ๐–ซ^2(โ„)\\\int_โ„{|f_3|}=2\int_0^โˆž๐–พ^{-x}๐–ฝx=2,&f_3โˆˆ๐–ซ^1(โ„)\\\int_โ„{|f_3|}^2=2\int_0^โˆž๐–พ^{-2x}๐–ฝx=1,&f_3โˆˆ๐–ซ^2(โ„)\\\int_โ„{|f_4|}=\int_โ„\frac1{x^2+1}๐–ฝx=\left[\tan^{-1}x\right]_{-โˆž}^โˆž=ฯ€,&f_4โˆˆ๐–ซ^1(โ„)\\\int_โ„{|f_4|}^2=\int_โ„\frac1{(x^2+1)^2}๐–ฝx=\frac12\left[\frac{x}{1+x^2} +\tan^{-1}x\right]_{-โˆž}^โˆž=\frac{ฯ€}2,&f_4โˆˆ๐–ซ^2(โ„)\end{array}\] $f_1โˆˆ๐–ข^โˆž$ and $(๐–พ^{-x^2})^{(n)}=p_n(x)๐–พ^{-x^2}$ for some polynomial $p_n(x)$. Since $๐–พ^{x^2}=\sum_{n=0}^{โˆž}\frac{x^{2n}}{n!}$, for $nโ‰ฅ0$, for $xโˆˆโ„$, $|x^n๐–พ^{-x^2}|โ‰ค\left|\frac{x^n}{1+\frac{x^{2n}}{n!}}\right|$, so $x^n๐–พ^{-x^2}$ is bounded, thus $๐–พ^{-x^2}$ and all of its derivatives are rapidly decreasing, so $f_1โˆˆ๐’ฎ(โ„)$. $\lim_{xโ†’0+}f_2(x)=1,\lim_{xโ†’0-}f_2(x)=0$, so $f_2โˆ‰๐–ข^0$, so $f_2โˆ‰๐’ฎ(โ„)$. $\lim_{xโ†’0+}f_3'(x)=-1,\lim_{xโ†’0-}f_3'(x)=1$, so $f_3โˆ‰๐–ข^1$, so $f_3โˆ‰๐’ฎ(โ„)$. $f_4โˆˆ๐–ข^โˆž$ but $\lim_{xโ†’+โˆž}x^3f_4(x)=+โˆž$, so $f_4โˆ‰๐’ฎ(โ„)$. (b) Calculate the Fourier transforms of these functions. Deduce Laplaceโ€™s integral identity \[โˆซ_0^โˆž \frac{\cos (x ฮพ)}{x^2+1}๐–ฝx=\frac{ฯ€}{2}๐–พ^{-|ฮพ|}\] valid for all $ฮพ โˆˆ โ„$. \begin{align*}\widehat{f_1}(ฮพ)&=โˆซ_{-โˆž}^{โˆž}๐–พ^{-x^2+2x}๐–พ^{-๐—‚ฮพx}๐–ฝx\\&=โˆซ_{-โˆž}^{โˆž}๐–พ^{(1-\frac{๐—‚ฮพ}2)^2-(x-1+\frac{๐—‚ฮพ}2)^2}๐–ฝx\\&=\sqrtฯ€๐–พ^{(1-\frac{๐—‚ฮพ}2)^2}\\&=\sqrtฯ€๐–พ^{-\frac14(ฮพ+2๐—‚)^2}\end{align*} \begin{align*}\widehat{f_2}(ฮพ)&=โˆซ_{0}^{โˆž}๐–พ^{-x}๐–พ^{-๐—‚ฮพx}๐–ฝx\\&=-\left[\frac{๐–พ^{-(1+๐—‚ฮพ)x}}{1+๐—‚ฮพ} \right]_{0}^{โˆž}\\&=\frac{1}{1+๐—‚ฮพ}\end{align*} \begin{align*}\widehat{f_3}(ฮพ)&=โˆซ_{-โˆž}^{โˆž}๐–พ^{-|x|}๐–พ^{-๐—‚ฮพx}๐–ฝx\\&=โˆซ_{-โˆž}^{0}๐–พ^x๐–พ^{-๐—‚ฮพx}๐–ฝx+โˆซ_{0}^{โˆž}๐–พ^{-x}๐–พ^{-๐—‚ฮพx}๐–ฝx\\&= \left[ \frac{๐–พ^{(1-๐—‚ฮพ)x}}{1-๐—‚ฮพ} \right]_{-โˆž}^0-\left[\frac{๐–พ^{-(1+๐—‚ฮพ)x}}{1+๐—‚ฮพ} \right]_{0}^{โˆž}\\&=\frac{1}{1-๐—‚ฮพ}+\frac{1}{1+๐—‚ฮพ}=\frac2{1+ฮพ^2}\end{align*} By Fourier inversion formula, \[๐–พ^{-|ฮพ|}=\frac1{2ฯ€}\int_{-โˆž}^{โˆž}\frac{2}{1+x^2}๐–พ^{๐—‚ฮพx}๐–ฝx\] changing $ฮพ$ to $-ฮพ$ we get \[ฯ€๐–พ^{-|ฮพ|}=\int_{-โˆž}^{โˆž}\frac1{1+x^2}๐–พ^{-๐—‚ฮพx}๐–ฝx\] so $\widehat{f_4}(ฮพ)=ฯ€๐–พ^{-|ฮพ|}$, we deduce \begin{align*}\int^\infty_0 f_4(x)\cosฮพx\,๐–ฝx&=\frac{1}{2}\int^\infty_{-\infty} f_4(x)\cosฮพx\,๐–ฝx\\ &=\frac{1}{2}\int^\infty_{-\infty} f_4(x)\frac{๐–พ^{๐—‚ฮพx}+๐–พ^{-๐—‚ฮพx}}{2}\,๐–ฝx\\ &=\frac{1}{4}(\widehat{f_4}(-ฮพ)+\widehat{f_4}(ฮพ))=\frac12\widehat{f_4}(ฮพ)=\frac{ฯ€}2๐–พ^{-|ฮพ|}.\end{align*} (c) For each of the Fourier transforms $\widehat{f_j}$, determine whether it is a function in $๐’ฎ(โ„)$, in $๐–ซ^1(โ„)$, or in $๐–ซ^2(โ„)$. $|\widehat{f_1}(ฮพ)|=\sqrtฯ€๐–พ^{1-\frac14ฮพ^2}$, so $\widehat{f_1}โˆˆ๐’ฎ(โ„)$ by (a). $|\widehat{f_2}(ฮพ)|=\frac{1}{\sqrt{1+ฮพ^2}}$, $\int_{0}^{t}|\widehat{f_2}(ฮพ)|=\sinh^{-1}tโ†’โˆž$ as $tโ†’โˆž$, so $\widehat{f_2}(ฮพ)โˆ‰๐–ซ^1,\widehat{f_2}(ฮพ)โˆˆ๐–ซ^2,\widehat{f_2}(ฮพ)โˆ‰๐’ฎ(โ„)$. $|\widehat{f_3}(ฮพ)|=2f_4(ฮพ)$, so $\widehat{f_3}(ฮพ)โˆˆ๐–ซ^1,\widehat{f_3}(ฮพ)โˆˆ๐–ซ^2,\widehat{f_3}(ฮพ)โˆ‰๐’ฎ(โ„)$. $|\widehat{f_4}(ฮพ)|=ฯ€f_3(ฮพ)$, so $\widehat{f_4}(ฮพ)โˆˆ๐–ซ^1,\widehat{f_4}(ฮพ)โˆˆ๐–ซ^2,\widehat{f_4}(ฮพ)โˆ‰๐’ฎ(โ„)$.