Arxiv: Alan D. Sokal
Uniform boundedness theorem.
$X$ a Banach space
$Y$ a normed linear space
$β±$ a family of bounded linear operators from $X$ to $Y$.
If $β±$ is pointwise bounded (i.e., $\sup_{T β β±} \|Tx\| < β$ for all $x β X$),
then $β±$ is norm-bounded (i.e., $\sup_{T β β±} \|T\| < β$).
Lemma. Let $T$ be a bounded linear operator from a normed linear space $X$ to a normed linear space $Y$.
Then for any $x β X$ and $r > 0$, we have
\[
\sup\limits_{x' β B(x,r)} \| Tx' \| β₯ \|T\| r ,
\]
where $B(x,r) = \{x' β X \colon\: \|x'-x\| < r \}$.
Proof. For $ΞΎ β X$ we have
\[
\max\{ \| T(x+ΞΎ) \| , \| T(x-ΞΎ) \| \}
β₯
\frac12 [ \| T(x+ΞΎ) \| + \| T(x-ΞΎ) \| ]
β₯
\| T ΞΎ \| ,
\]
where the second $β₯$ uses the triangle inequality in the form $\| Ξ±-Ξ² \| β€ \|Ξ±\| + \|Ξ²\|$.
Now take the supremum over $ΞΎ β B(0,r)$.
β
Proof of the uniform boundedness theorem.
Suppose $β±$ is not norm-bounded, i.e. $\sup_{T β β±} \|T\| = β$,
and choose $(T_n)_{n=1}^β$ in $β±$ such that $\|T_n\| β₯ 4^n$.
Then set $x_0 = 0$, and for $n β₯ 1$ use the lemma to
choose inductively $x_n β X$
such that $\| x_n - x_{n-1} \| β€ 3^{-n}$
and $\| T_n x_n \| β₯ \frac{2}{3} 3^{-n} \| T_n \|$.
The sequence $(x_n)$ is Cauchy, hence convergent to some $x β X$;
and it is easy to see that
$\| x-x_n \| β€\sum_{i=n+1}^{β} 3^{-i}=\frac{1}{2} 3^{-n}$ and hence $\|T_nx-T_nx_n\|β€\frac{1}{2} 3^{-n}$.
By triangle inequality
\[\| T_n x \| β₯\|T_nx_n\|-\|T_nx-T_nx_n\|β₯\frac{1}{6} 3^{-n} \| T_n \| β₯ \frac{1}{6} (4/3)^n
β β
\]
so β± is not pointwise bounded.
β