Elementary Proof Of The Uniform Boundedness Theorem

 
Arxiv: Alan D. Sokal Uniform boundedness theorem. $X$ a Banach space $Y$ a normed linear space $β„±$ a family of bounded linear operators from $X$ to $Y$. If $β„±$ is pointwise bounded (i.e., $\sup_{T ∈ β„±} \|Tx\| < ∞$ for all $x ∈ X$), then $β„±$ is norm-bounded (i.e., $\sup_{T ∈ β„±} \|T\| < ∞$). Lemma. Let $T$ be a bounded linear operator from a normed linear space $X$ to a normed linear space $Y$. Then for any $x ∈ X$ and $r > 0$, we have \[ \sup\limits_{x' ∈ B(x,r)} \| Tx' \| β‰₯ \|T\| r , \] where $B(x,r) = \{x' ∈ X \colon\: \|x'-x\| < r \}$. Proof. For $ΞΎ ∈ X$ we have \[ \max\{ \| T(x+ΞΎ) \| , \| T(x-ΞΎ) \| \} β‰₯ \frac12 [ \| T(x+ΞΎ) \| + \| T(x-ΞΎ) \| ] β‰₯ \| T ΞΎ \| , \] where the second $β‰₯$ uses the triangle inequality in the form $\| Ξ±-Ξ² \| ≀ \|Ξ±\| + \|Ξ²\|$. Now take the supremum over $ΞΎ ∈ B(0,r)$. ∎ Proof of the uniform boundedness theorem. Suppose $β„±$ is not norm-bounded, i.e. $\sup_{T ∈ β„±} \|T\| = ∞$, and choose $(T_n)_{n=1}^∞$ in $β„±$ such that $\|T_n\| β‰₯ 4^n$. Then set $x_0 = 0$, and for $n β‰₯ 1$ use the lemma to choose inductively $x_n ∈ X$ such that $\| x_n - x_{n-1} \| ≀ 3^{-n}$ and $\| T_n x_n \| β‰₯ \frac{2}{3} 3^{-n} \| T_n \|$. The sequence $(x_n)$ is Cauchy, hence convergent to some $x ∈ X$; and it is easy to see that $\| x-x_n \| ≀\sum_{i=n+1}^{∞} 3^{-i}=\frac{1}{2} 3^{-n}$ and hence $\|T_nx-T_nx_n\|≀\frac{1}{2} 3^{-n}$. By triangle inequality \[\| T_n x \| β‰₯\|T_nx_n\|-\|T_nx-T_nx_n\|β‰₯\frac{1}{6} 3^{-n} \| T_n \| β‰₯ \frac{1}{6} (4/3)^n β†’ ∞ \] so β„± is not pointwise bounded. ∎