Algebraic number theory problem sheet 4

 
$\DeclareMathOperator\Cl{Cl}$
  1. Find $\Cl(K)$, where $K=๐(\sqrt{-6})$.
    Since $dโ‰ก2\pmod4$, $๐’ช_K=๐™[\sqrt{-6}]$ and $โˆ†_K=-6ร—4$. Therefore $M_K=\frac4ฯ€\sqrt{6}โ‰ˆ3.1$. Thus generators of $\Cl(K)$ may be found amongst the ideal prime factors of (2) and (3).
    The minimal polynomial $m(X)$ for $\sqrt{-6}$ is $X^2+6$.
    Over $๐…_2$ this factors as $X^2$, so by Dedekind $(2) = ๐”ญ_2^2$ where $๐”ญ_2=(2,\sqrt{-6})$ has norm 2 so not principal.
    Over $๐…_3$ this factors as $X^2$, so by Dedekind $(3) =๐”ญ_3^2$ where $๐”ญ_3=(3,\sqrt{-6})$ has norm 3 so not principal.
    $๐”ญ_2๐”ญ_3=(6,\sqrt{-6})=(\sqrt{-6})$ is principal, so $[๐”ญ_2]=[๐”ญ_3]$. So $\Cl(K)โ‰…C_2$ is generated by $[๐”ญ_2]$.
  2. Let $K$ be a number field, other than ๐. Show that ${|ฮ”_K|}>1$.
    Let $n$ be the degree of $K$ over ๐, and $2r_{2}=n-r_{1}$ be the number of complex embeddings. Then every class in the ideal class group of $K$ contains an ideal of norm not exceeding Minkowski's bound \[M_K=\left(\frac{4}{ฯ€}\right)^{r_2}\frac{n!}{n^n}\sqrt{|ฮ”_K|}\] Since an ideal has norm at least one, we have $1โ‰คM_K$, so that \[ \sqrt{|ฮ”_K|}โ‰ฅ \left(\fracฯ€4\right)^{r_{2}}{\frac {n^{n}}{n!}}โ‰ฅ \left({\frac {ฯ€ }{4}}\right)^{n/2}{\frac {n^n}{n!}}=\fracฯ€2\prod_{j=2}^{n-1}\frac{\left(1+\frac{1}{j}\right)^j}{\frac2{\sqrtฯ€}}>1โ€ƒ\text{since }\left(1+\frac{1}{j}\right)^j>\frac2{\sqrtฯ€}\text{for }j>1 \] so ${|ฮ”_K|}>1$.
  3. Find $\Cl(K)$, where $K=๐(\sqrt{-34})$.
    Since $dโ‰ก2\pmod4$, $๐’ช_K=๐™[\sqrt{-34}]$ and $โˆ†_K=-34ร—4$. Therefore $M_K=\frac4ฯ€\sqrt{34}โ‰ˆ7.4$. Thus generators of $\Cl(K)$ may be found amongst the ideal prime factors of (2) (3) (5) and (7).
    The minimal polynomial $m(X)$ for $\sqrt{-34}$ is $X^2+34$.
    Over $๐…_2$ this factors as $X^2$, so by Dedekind $(2) = ๐”ญ_2^2$ where $๐”ญ_2=(2,\sqrt{-34})$ has norm 2 so not principal.
    Over $๐…_3$ this is irreducible, so by Dedekind (3) is inert.
    Over $๐…_5$ this factors as $(X+1)(X-1)$, so by Dedekind $(5)=๐”ญ_5\overline{๐”ญ_5}$ where $๐”ญ_5=(5,1+\sqrt{-34})$ has norm 5 so not principal.
    Over $๐…_7$ this factors as $(X+1)(X-1)$, so by Dedekind $(7)=๐”ญ_7\overline{๐”ญ_7}$ where $๐”ญ_7=(7,1+\sqrt{-34})$ has norm 7 so not principal.
    Since $[๐”ญ_5]^{-1}=[\overline{๐”ญ_5}],[๐”ญ_7]^{-1}=[\overline{๐”ญ_7}]$, the class group is generated by $[๐”ญ_2],[๐”ญ_5],[๐”ญ_7]$.
    Note that $(1+\sqrt{-34})(1-\sqrt{-34})=35=5ร—7=๐”ญ_5\overline{๐”ญ_5}๐”ญ_7\overline{๐”ญ_7}$, considering factorisation of principal ideal $(1ยฑ\sqrt{-34})$ we have either $๐”ญ_5๐”ญ_7$ or $๐”ญ_5\overline{๐”ญ_7}$ is principal, so either $[๐”ญ_7]=[๐”ญ_5]^{-1}$ or $[๐”ญ_7]=[๐”ญ_5]$, so $\Cl(K)$ is generated by $๐”ญ_2,๐”ญ_5$.
    (Or check directly:\begin{align*} ๐”ญ_5๐”ญ_7&=(5,1+\sqrt{-34})(7,1+\sqrt{-34}) \\&=(35,5+5\sqrt{-34},7+7\sqrt{-34},-33+2\sqrt{-34}) \\&=(35,1+\sqrt{-34},-33+2\sqrt{-34})&1+\sqrt{-34}&=3ร—(5+5\sqrt{-34})-2ร—(7+7\sqrt{-34}) \\&=(35,1+\sqrt{-34})&-33+2\sqrt{-34}&=2ร—(1+\sqrt{-34})-35 \\&=(1+\sqrt{-34})&35&=(1-\sqrt{-34})ร—(1+\sqrt{-34}) \end{align*} so $[๐”ญ_7]=[๐”ญ_5]^{-1}$.)
    Note that $(4+\sqrt{-34})(4-\sqrt{-34})=50=5^2ร—2=(๐”ญ_5\overline{๐”ญ_5})^2๐”ญ_2^2$, considering factorisation of principal ideal $(4ยฑ\sqrt{-34})$ we have either $๐”ญ_2๐”ญ_5^2$ or $๐”ญ_2\overline{๐”ญ_5}^2$ is principal, so either $[๐”ญ_2]=[๐”ญ_5]^{-2}$ or $[๐”ญ_2]=[๐”ญ_5]^2$, so $\Cl(K)$ is generated by $๐”ญ_5$.
    (Or check directly: \begin{align*} ๐”ญ_5^2&=(25,5+5\sqrt{-34},-33+2\sqrt{-34}) \\&=(25,71+\sqrt{-34},-33+2\sqrt{-34})&17+2\sqrt{-34}&=(5+5\sqrt{-34})-2ร—(-33+2\sqrt{-34}) \\&=(25,-4+\sqrt{-34},-33+2\sqrt{-34})&-4+\sqrt{-34}&=(71+\sqrt{-34})-3ร—25 \\&=(25,-4+\sqrt{-34},-25)&-25&=(-33+2\sqrt{-34})-2ร—(-4+\sqrt{-34}) \\&=(25,-4+\sqrt{-34}) \end{align*} then \begin{align*} (4+\sqrt{-34})๐”ญ_5^2&=(100+25\sqrt{-34},50) \\&=(50,25\sqrt{-34})&25\sqrt{-34}=100+25\sqrt{-34}-2ร—50 \\&=(25)๐”ญ_2 \end{align*} so $[๐”ญ_2]=[๐”ญ_5]^2$.)
    but we proved $(2)=๐”ญ_2^2$, so $[๐”ญ_2]^2=e$, so $[๐”ญ_5]^4=[๐”ญ_2]^2=e$.
    So $\Cl(K)โ‰…C_4$ is generated by $[๐”ญ_5]$.
  4. Find $\Cl(K)$, where $K=๐(\sqrt{65})$.
    Since $dโ‰ก1\pmod4$, $๐’ช_K=๐™[ฮฑ],ฮฑ=\frac{1+\sqrt{65}}2$ and $โˆ†_K=65$. Therefore $M_K=\frac12\sqrt{65}<5$. Thus generators of $\Cl(K)$ may be found amongst the ideal prime factors of (2) and (3).
    The minimal polynomial $m(X)$ for $ฮฑ$ is $X^2-X-16$.
    Over $๐…_2$ this factors as $X(X+1)$, so by Dedekind $(2) = ๐”ญ_2๐”ฎ_2$ where $๐”ญ_2=(2,ฮฑ),๐”ฎ_2=(2,1+ฮฑ)$ have norm 2 so not principal [$N(a+bฮฑ)=2โ‡’(2a+b)^2-65b^2=ยฑ8$ which has no integer solutions $(a,b)$ since ยฑ8 is not quadratic residue mod 5].
    Over $๐…_3$ this has no roots, so is irreducible, so by Dedekind (3) is inert.
    Since $[๐”ญ_2]=[๐”ฎ_2]^{-1}$, the class group is generated by $[๐”ญ_2]$. \begin{align*} ๐”ญ_2^2&=(4,2ฮฑ,16+ฮฑ)&ฮฑ^2&=16+ฮฑ \\&=(4,2ฮฑ,ฮฑ)&ฮฑ&=(16+ฮฑ)-4ร—4 \\&=(4,ฮฑ) \\&=(4,ฮฑ-4) \\&=(ฮฑ-4)&4&=(ฮฑ+3)(ฮฑ-4) \end{align*} So $[๐”ญ_2]^2=e$. So $\Cl(K)โ‰…C_2$ is generated by $[๐”ญ_2]$.
  5. Find all integer solutions to the equation $y^2+74=x^3$.
    Let $K=๐(\sqrt{-74})$. It turns out that $h_K=10$. In particular, $๐’ช_K$ does not have unique factorisation.
    The equation factors in $๐’ช_K$ as $(y+\sqrt{-74})(y-\sqrt{-74})=x^3$. We do not have unique factorisation into elements of $๐’ช_K$, only into ideals, so we think of this as an equation \[\tag{1} (y+\sqrt{-74})(y-\sqrt{-74})=(x)^3 \] of ideals.
    We are going to prove that the two ideals on the left are coprime. Suppose some prime ideal $๐”ญ$ divides both terms on the LHS. Then $y+\sqrt{-74}, y-\sqrt{-74} โˆˆ ๐”ญ$, and so, taking the difference, $2 \sqrt{-74} โˆˆ ๐”ญ$. Therefore $๐”ญ โˆฃ(2 \sqrt{-74})$. (Here, we are using the fact that containment and division of ideals are the same thing, Theorem 5.2.)
    Taking norms, we have \[\tag{2} N(๐”ญ) โˆฃ N(2 \sqrt{-74})=2^3 โ‹… 37 . \] Also, since $๐”ญ โˆฃ(y+\sqrt{-74})$, we have $๐”ญ โˆฃ(x)^3$ and so \[\tag{3} N(๐”ญ) โˆฃ N\left((x)^3\right)=x^6 . \] We claim that neither 2 nor 37 divides $x$.
    If $2 โˆฃ x$ then $8 โˆฃ x^3$, so $y^2=x^3-74 โ‰ก 2\pmod 4$, a contradiction.
    If $37 โˆฃ x$ then $37 โˆฃ y$, and so $37^2 โˆฃ y^2-x^3=74$. This is also a contradiction.
    From these facts and $(2),(3)$ we have $N(๐”ญ)=1$, which is impossible; therefore we are forced to conclude that $๐”ญ$ does not exist, so the ideals $(y+\sqrt{-74}),(y-\sqrt{-74})$ are indeed coprime.

    Now we return to (1). By unique factorisation of ideals, both $(y+\sqrt{-74})$ and $(y-\sqrt{-74})$ are cubes of ideals. Suppose that $(y+\sqrt{-74})=๐”ž^3$. In particular, $[๐”ž]^3=e$. Since the order of the class group $h_K=10$ is coprime to 3, $[๐”ž]$ is trivial, or in other words $๐”ž$ is a principal ideal. Thus we have an equation \[ (y+\sqrt{-74})=(a+b \sqrt{-74})^3 \] for some $a, b โˆˆ ๐™$. This means that \[ y+\sqrt{-74}=u(a+b \sqrt{-74})^3 \] in $๐’ช_K$, where $u$ is a unit. The only units are $ยฑ 1$; by replacing $a, b$ with $-a,-b$ if necessary, we may assume that $u=1$.
    Since $\sqrt{-74}$ is irrational, comparing coefficients we obtain \[ y=a(a^2-3ร—74b^2),โ€ƒb(3 a^2-74b^2)=1. \] The second of these implies that $b= ยฑ 1$ and hence that $3 a^2-74= ยฑ 1$, so $a=ยฑ5,y=ยฑ197ร—5=ยฑ985,x=99$.
  6. Show that the ring of integers in $๐(2^{1/3})$ is a principal ideal domain (any results about this field established on previous sheets may be used without proof).
    proven on Sheet 1 $๐’ช_K=๐™[2^{1/3}]$. To prove the class group is trivial by using the Minkowski bound: $$ \left|ฮ”_K\right|= \left|\text{disc}(1, 2^{1/3}, 2^{2/3})\right| = 108 = 2^23^3, $$ so that the Minkowski bound for $K$ is given by $$ \frac{3!}{3^3}โ‹… \frac{4}{ฯ€}{\textstyle\sqrt{\left|ฮ”_K\right|}}=\frac{16}{\sqrt{3}ฯ€}< 3 $$ The minimal polynomial $m(X)$ for $2^{1/3}$ is $X^3-2$.
    Over $๐…_2$ this factors as $X^3$, so by Dedekind $(2) =(2^{1/3})^3$, so the class group of $K$ is trivial.