IV.1. Let$$A=\pmatrix{3&0&0\\0&2+2\sqrt{-5}&0\\0&0&4}$$Explain why A is in Smith normal form over β, but is not in Smith normal form over $β€[\sqrt{-5}]$. Is A equivalent to a matrix in Smith normal form over $β€[\sqrt{-5}]$?
A is diagonal. Since β is a field, $a|bβa,bββ^*$, so A is in Smith normal form.A is not in Smith normal form over $β€[\sqrt{-5}]$, since $3β€2+2\sqrt{-5}$.
$\gcd(3,4)=1,\lcm(3,4)=12βA$ is equivalent to $$\pmatrix{1&0&0\\0&2+2\sqrt{-5}&0\\0&0&12}$$This is in Smith normal form, since $12=(2+2\sqrt{-5})(1-\sqrt{-5})$.
IV.2. Find elements a1 β£ a2 in β€[i], and a β€[i]-linear isomorphismβ€[i]/β¨a1β© β β€[i]/β¨a2β© β β€[i]/β¨2β© β β€[i]/β¨3 β 5iβ©.
Find GCD of $2,3-5i$ in $β€[i]$ by the extended Euclidean algorithm: \begin{align*} 3-5i&=(1-3i)2+1+i\\ 2&=(1-i)(1+i) \end{align*} $β΄a_1=\gcd(2,3-5i)=1+i,a_2=\lcm(2,3-5i)=2+8i$.Using $3-5i-(1-3i)2=1+i$ to perform elementary row and column operations \begin{align*}\pmatrix{2\\&3-5i}&\xrightarrow[c_1β¦c_1+c_2]{r_2β¦r_2-(1-3i)r_1}\pmatrix{2\\1+i&3-5i} \xrightarrow{r_1βr_2}\pmatrix{1+i&3-5i\\2} \xrightarrow[c_2β¦c_2+(1+4i)c_1]{r_2β¦r_2-(1-i)r_1}\pmatrix{1+i\\&2+8i} \end{align*}Multiplying elementary matrices $$\pmatrix{1+i\\&2+8i}=\pmatrix{2-2 i & -1 \\-1-4 i & -1+i}\pmatrix{2\\& 3-5 i}\pmatrix{1 & -1-4 i \\1 & -4 i}$$The inverse of the matrix on the right is$$Q=\pmatrix{1 & -1-4 i \\1 & -4 i}^{-1}=\pmatrix{-4i&1+4i\\-1&1}$$The action of $Q$ on $β€[i]^2$ is\[\pmatrix{r_1&r_2}Q=\pmatrix{-4 ir_1-r_2,(1+4 i)r_1+r_2}\] By Thm 7.1 the isomorphism is\[(r_1+β¨1+iβ©,r_2+β¨2+8iβ©)β¦(-4 ir_1-r_2+β¨2β©,(1+4 i)r_1+r_2+β¨3-5iβ©)\]
A=ZZ[i]^1 A.span([[2]]).direct_sum(A.span([[3-5*i]]))
IV.3. Show that if A, B β Mn(π½) are such that π½n/π½nA is π½-linearly isomorphic to π½n/π½nB, then A and B are equivalent as matrices.
π½ is a field, so an π½-module is a vector space,IV.4. Show that if R is the ring C(β) with pointwise addition and multiplication then there are A, B β M1(R) with A β B, and for which R1/R1A is R-linearly isomorphic to R1/R1B.
Proved in I.6.IV.5. Determine the rational canonical form of the matrix$$A=\pmatrix{1&1&0&0\\0&1&0&0\\2&3&-1&4\\1&1&-1&3}$$
To transform a matrix on $β[X]$ to SNF, we multiply it on both sides by invertible matrices.- The inverse operation of adding $f(x)$ times row $i$ to row $j$ is adding $-f(x)$ times row $i$ to row $j$, so $f(x)$ is allowed to be any element
- The inverse operation of rescaling $i$th row/column by $f(x)$ is rescaling it by $f(x)^{-1}$, so $f(x)$ is only allowed to be units [$\deg f(x)>0$ disallowed]
R.<x> = PolynomialRing(QQ) A = matrix(QQ,4,4,[1,1,0,0,0,1,0,0,2,3,-1,4,1,1,-1,3]) M = x*identity_matrix(4)-A print(latex(M)) M.swap_rows(0,3) M.rescale_row(0,-1) M.add_multiple_of_row(2,0,2) M.add_multiple_of_row(3,0,-x+1) M.add_multiple_of_column(1,0,-1) M.add_multiple_of_column(2,0,1) M.add_multiple_of_column(3,0,x-3) print('βΌ',latex(M)) M.swap_rows(1,2) M.rescale_row(1,-1) M.add_multiple_of_row(2,1,-x+1) M.add_multiple_of_row(3,1,x) M.add_multiple_of_column(2,1,x-1) M.add_multiple_of_column(3,1,-2*x+2) print('βΌ',latex(M)) M.add_multiple_of_row(3,2,1) M.add_multiple_of_column(3,2,2) print('βΌ',latex(M)) print('We can verify the last invariant factor is equal to',A.minpoly())\begin{multline*}\left(\begin{array}{rrrr} x - 1 & -1 & 0 & 0 \\ 0 & x - 1 & 0 & 0 \\ -2 & -3 & x + 1 & -4 \\ -1 & -1 & 1 & x - 3 \end{array}\right) βΌ \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & x - 1 & 0 & 0 \\ 0 & -1 & x - 1 & -2 x + 2 \\ 0 & -x & x - 1 & x^{2} - 4 x + 3 \end{array}\right)\\ βΌ \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & x^{2} - 2 x + 1 & -2 x^{2} + 4 x - 2 \\ 0 & 0 & -x^{2} + 2 x - 1 & 3 x^{2} - 6 x + 3 \end{array}\right) βΌ \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & x^{2} - 2 x + 1 & 0 \\ 0 & 0 & 0 & x^{2} - 2 x + 1 \end{array}\right)\end{multline*} We can verify the last invariant factor is equal to $m_A(x)=x^2 - 2x + 1$
$A$ have two invariant factors $x^2-2x+1$ with companion matrix $\pmatrix{ 0 & -1 \\ 1 & 2}$
So the rational canonical form of $A$ is\[\left(\begin{array}{cc|cc} 0 & -1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ \end{array}\right)\]
IV.6. Suppose that G is a finite commutative group. Show that there is an element x β G such that the order of every y β G divides the order of x. Assuming that every polynomial in π½[X] of degree N has at most N roots show that U(π½) is a cyclic group when π½ is a finite field.
By Corollary 7.2 G is isomorphic to $β€/β¨d_1β©ββ―ββ€/β¨d_nβ©$ for natural numbers $d_1β£β―β£d_n$. Let x be the element of G corresponding to $(0,β¦,0,1)$ then x has the maximum order $d_n$, and the order of any element of G divides $d_n$.Let |U(π½)| = n and x is an element of maximum order d, by Lagrange's theorem $d|n$.
We proved all elements of U(π½) have order dividing d, so they are roots of the polynomial $X^d-1$, which have$β€d$ roots in U(π½), so $nβ€d$, so $n=d$, so U(π½) is generated by $x$.
IV.7. Suppose that R is a commutative ring and for a1, β¦, an β Rncolwrite [a1, β¦, an] for the matrix in Mn(R) with columns a1, β¦, an in order. Show that the maps Rcolnβ R; ai β¦ det[a1, β¦, an] are R-linear for each 1 β€ i β€ n; and det[a1, β¦, an] = 0 whenever ai = aj for some i β j. By considering det[Ba1, β¦, Ban] for B β Mn(R) show that det BA = det B det A.
$$r\det[a_1,β¦,a_i,β¦,a_n]+s\det[a_1,β¦,a_i',β¦,a_n]=\det[a_1,β¦,ra_i+sa_i',β¦,a_n]$$So the maps ai β¦ det[a1, β¦, an] are R-linear.If a = ai = aj for some i β j. Since swapping columns negates the determinant
Write $a_i$ as linear combination of basis $e_i$:$$a_i=\sum_{j=1}^na_{j,i}e_j$$In the linear expansion, using $\det[β¦,e_j,β¦,e_j,β¦]=0$, we get \[\left.\begin{aligned}\det[Ba_1,β¦,Ba_n]&=\det[Ba_{11}e_1,Ba_{22}e_2,β¦,Ba_{nn}e_n]\\&+\det[Ba_{21}e_2,Ba_{12}e_1,β¦,Ba_{nn}e_n]\\&+β―\\&+\det[Ba_{n1}e_n,Ba_{n-1,2}e_{n-1},β¦,Ba_{1n}e_1]\end{aligned}\right\}n!\text{ terms}\]Let $B=[b_1,β¦,b_n]$, then $Be_j=b_j$, we get \[\left.\begin{aligned}\det[Ba_1,β¦,Ba_n]&=\det[a_{11}b_1,a_{22}b_2,β¦,a_{nn}b_n]\\&+\det[a_{21}b_2,a_{12}b_1,β¦,a_{nn}b_n]\\&+β―\\&+\det[a_{n1}b_n,a_{n-1,2}b_{n-1},β¦,a_{1n}b_1]\end{aligned}\right\}n!\text{ terms}\] Factoring out the constants \[\left.\begin{aligned}\det[Ba_1,β¦,Ba_n]&=a_{11}a_{22}β―a_{nn}\det B\\&-a_{21}a_{12}β―+a_{nn}\det B\\&Β±β―\\&+(-1)^{\small\frac{n(n-1)}2}a_{n1}a_{n-1,2}β―a_{1n}\det B\end{aligned}\right\}n!\text{ terms}\]Factoring out $\det B$ we get $\det BA=\det B\det A$.
IV.8. Show that if$$A:=\pmatrix{2&0\\0&X}βM_2(β€[X])\text{ and }B:=\pmatrix{2&X\\0&2}βM_2(β€[X])$$then A is not equivalent to any matrix in Smith normal form, and B is not equivalent to any diagonal matrix.
Suppose $AβΌA'$ in SNF, then $A'_{1,1}$divides both 2 and $X$, so $A'_{1,1}=Β±1$, but $Β±1ββ¨2,Xβ©$.Suppose $BβΌ\pmatrix{p(x)\\&q(x)}βp(x),q(x)ββ¨2,Xβ© $.
Lemma: $AβΌB$ in $M_2(β€[X])$ then $\det A=Β±\det B$
$p(x)β q(x)|\det B=4βp(x)=q(x)=Β±2$ but $Xββ¨2β©$, contradiction.IV.9. Suppose that R is a PID and M is a finitely generated R-module. Show that there are elements a1 β£ β― β£ ar in R such that M is R-linearly isomorphic to R/β¨a1β© β β― β R/β¨arβ©.
IV.10. Suppose that R is commutative or R is a division ring. Show that if Ο : Rn β Rm is an R-linear surjection and m > n, then R is trivial. Deduce that if R is non-trivial then any two bases of a finitely generated R-module have the same size.