- Give an example of a sequence $\left(f_n\right)$ in $β^1(β)$ such that $\lim_{nββ}\left\|f_n\right\|_1=0$ and $\limsup_{nββ}f_n(x)=β$ for each $xβ(0,1)$.$f_n(x)=rΟ_{((k-1)2^{-r},k2^{-r})},n=2^r+k,kβ\{1,2,β¦,2^r\}$
- β a sequence $\left(g_n\right)_{nβ©Ύ1}$ in $β^1(β)$ such that $\lim_{nββ}\left\|g_n\right\|_1=0$ and $\liminf_{nβ β}\left|g_n(x)\right|>0$ for each $xβ(0,1)$Proof: By Fatou's lemma$$\int_β\liminf_{nββ}{|g_n(x)|}β©½\liminf_{nββ}\int_β{|g_n(x)|}=0$$so $\liminf_{nβ β}\left|g_n(x)\right|=0$ a.e.
- State the Monotone and the Dominated Convergence Theorems.Theorem 4.2. [Monotone Convergence Theorem] If $(f_n)$ is an increasing sequence of non-negative measurable functions and $f=\lim_{nββ}f_n$, then $β«f=\lim_{nββ}β«f_n$
Theorem 6.3. [Dominated Convergence Theorem] Let $(f_n)$ be a sequence of measurable functions such that:- $(f_n(x))$ converges a.e. to a limit $f(x)$,
- there is an integrable function $g$ such that, for each $n$, ${|f_n(x)|}β€g(x)$ a.e.
- Let $\left(f_n\right)$ be a sequence of real-valued Lebesgue integrable functions on β. Prove that if the series$$\sum_{n=1}^β\int_β\left|f_n\right|$$is convergent to $Kββ$ then the series $\sum_{n=1}^β\left|f_n\right|$ converges almost everywhere to an integrable function.For every $x$, the sequence $g_m(x)β\sum_{n=1}^m\left|f_n(x)\right|,m=1,2,β¦$ is increasing\[\int_βg_m=\sum_{n=1}^m\int_β\left|f_n\right|β©½\sum_{n=1}^β\int_β\left|f_n\right|=K\]So $g_m(x)<β$ a.e. $x$ [Bounded monotone sequence converges] So $g_m(x)$ converges a.e. $x$\[\int_β\lim_{mββ}g_m\xlongequal{\text{MCT}}\lim_{mββ}\int_βg_m\xlongequal{\text{interchange β« with finite sum}}\lim_{mββ}\sum_{n=1}^m\int_β\left|f_n\right|=K\]Deduce, or prove otherwise, that $\sum_{n=1}^βf_n$ converges almost everywhere to an integrable function $h$ and that $$ \int_β h=\sum_{n=1}^β\int_β f_n $$We just proved $\sum_{n=1}^β\left|f_n\right|$ converges a.e. to a function $g$, so [Absolute convergence implies convergence] $\sum_{n=1}^βf_n$ converges a.e. to a function $h$. $$\left|h_m\right|β€g_mβ€gβΉ\int_βh\xlongequal{\text{DCT}}\lim_{mββ}\int_βh_m\xlongequal{\text{interchange β« with finite sum}}\lim_{mββ}\sum_{n=1}^m\int_βf_m=\sum_{n=1}^β\int_β f_n$$
- Prove that if $Ξ±$ is a real number then $$ \int_0^β\frac{\sin Ξ± x}{\mathrm{e}^x-1} \mathrm{~d} x=\sum_{n=1}^β\frac{Ξ±}{Ξ±^2+n^2} . $$For each positive integer $n$ the function $Ο_n(x)=Ο_{(0, β)}(x) x \mathrm{e}^{-n x}$ and $f_n(x):=Ο_{(0, β)}(x) \mathrm{e}^{-n x} \sin Ξ± x$ are integrable.
For $xβ₯0$, ${|\sin Ξ±x|}β€{|Ξ±|}x$. So $\left|f_n(x)\right|β€{|Ξ±|}Ο_n(x)$.$$\sum_{n=1}^β\int_βΟ_n(x)=\sum_{n=1}^β\frac1{n^2}<β$$So the condition in (b) is satisfied. $$ \int_0^β\frac{\sinΞ± x}{e^x-1}=\int_β\sum_{n=1}^βf_n\overset{\text{(b)}}=\sum_{n=1}^β\int_βf_n=\sum_{n=1}^β\fracΞ±{Ξ±^2+n^2} $$
-
- Give careful statements of the theorems of Fubini and Tonelli.Theorem 8.2. [Fubiniβs Theorem] Let $f:β^2ββ$ be integrable. Then, for almost all $y$, the function $xβ¦f(x,y)$ is integrable. Moreover, defining (for almost all $y$) by $F(y)=β«f(x,y)dx$, then $F$ is integrable, and$$\int_{β^{2}} f(x, y) d(x, y)=\int_β\left(\int_β f(x, y) d x\right) d y$$
Theorem 8.3. [Tonelliβs Theorem] Let $f:β^2ββ$ be a measurable function, and suppose that either of the following repeated integrals is finite:$$\int_β\left(\int_β|f(x, y)| d x\right) d y, \quad \int_β\left(\int_β|f(x, y)| d y\right) d x$$Then $f$ is integrable. - By applying these theorems to the function $f$ defined on $[0,n]Γ[0,β)$ by $$ f(x, t)=\sin x \mathrm{e}^{-t x} $$ show that $$ \lim_{nββ}\int_0^n \frac{\sin x}{x}\mathrm{~d}x=\fracΟ2 $$\begin{align*} I_n&=\int_0^n\int_0^β\sin x\mathrm{e}^{-t x}\mathrm{~d}t\mathrm{~d}x\\ &=\int_0^n\frac{\sin x}x\mathrm{~d}x \end{align*} ${|f(x,t)|}β€ x \mathrm{e}^{-t x}$ and $β«_0^nβ«_0^ βx\mathrm{e}^{-t x}\mathrm{~d}t\mathrm{~d}x=β«_0^n1\mathrm{~d}x=n$, by Tonelli $f(x,t)$ is integrable on $[0,n]Γ[0,β)$. By Fubini, \begin{align*} I_n&=\int_0^β\int_0^n\sin x\mathrm{e}^{-t x}\mathrm{~d}x\mathrm{~d}t\\ &=\int_0^β\frac1{t^2+1}\mathrm{~d}t-\int_0^β\frac{e^{-tn}\left(t\sin n+\cos n\right)}{t^2+1}\mathrm{~d}t \end{align*} Taking the limit $nββ$ the second integral$β0$ [Because $\left|\frac{e^{-tn}\left(t\sin n+\cos n\right)}{t^2+1}\right|β€(t+1)e^{-tn}$ and $β«_0^β(t+1)e^{-tn}\mathrm dt=n^{-2}+n^{-1}β0$] \[\lim_{nββ}I_n=\int_0^β\frac1{t^2+1}\mathrm{~d}t=\fracΟ2\]
- Is $\frac{\sin x}{x}$ Lebesgue integrable on $(0, β)$ ?Ex5.3 5. Consider $f(x)=(\sin x) / x$ over $(0, β)$. Now $$ \int_{r \pi}^{(r+1) \pi}\left|\frac{\sin x}{x}\right| d x \geq \int_{r \pi}^{(r+1) \pi} \frac{|\sin x|}{(r+1) \pi} d x=\frac{2}{(r+1) \pi} . $$ Hence, $$ \lim_{nββ}\int_0^{n \pi}{|f(x)|} d x \geq \lim_{nββ}\sum_{r=0}^{n-1} \frac{2}{(r+1) \pi}=β . $$ So $|f|$ is not integrable, and hence $f$ is not integrable, over $(0, β)$.