- Frobenius method. Consider the differential equation$$(x-1)y''(x)-xy'(x)+y(x)=0.$$
- Show that $x=1$ is a regular singular point, and determine the appropriate form of the series expansions about $x=1$ for two linearly independent solutions.
- By computing the coefficients in the series, find closed form expressions for the two linearly independent solutions.
$\frac{-x}{x-1}(x-1),\frac1{x-1}(x-1)^2$ are analytic at 1, so $x=1$ is a regular singular point. We seek a solution \(y(x)=\sum_{k=0}^∞a_k(x-1)^{α+k}\)\[\sum_{k=0}^∞a_k(α+k)(α+k-1)(x-1)^{α+k-1}-x\sum_{k=0}^∞a_k(α+k)(x-1)^{α+k-1}+\sum_{k=0}^∞a_k(x-1)^{α+k}=0\]Use $-x=-(x-1)-1$ in the 2nd term. Shift k in the 3rd term\[\sum_{k=0}^∞(α+k-2)a_k(α+k)(x-1)^{α+k-1}-\sum_{k=0}^∞a_k(α+k)(x-1)^{α+k}+\sum_{k=1}^∞a_{k-1}(x-1)^{α+k-1}=0\]Shift k in the 2nd term. Separate k = 0 in the 1st term.\begin{multline*}α(α-2)a_0(x-1)^{α-1}+\sum_{k=1}^∞(α+k-2)a_k(α+k)(x-1)^{α+k-1}-\sum_{k=1}^∞a_{k-1}(α+k-1)(x-1)^{α+k-1}\\+\sum_{k=1}^∞a_{k-1}(x-1)^{α+k-1}=0\end{multline*}Combine these sums\[α(α-2)a_0(x-1)^{α-1}+\sum_{k=1}^∞(α+k-2)[a_k(α+k)-a_{k-1}](x-1)^{α+k-1}=0\tag1\]Indicial equation $α(α-2)=0$ has roots $2,0$.
Taking $α=0$, solving $a_k(α+k)=a_{k-1}$, we find $a_n={a_0\over\prod_{k=1}^n(2+k)}={2a_0\over(n+2)!}$ Thus a solution is [set a0 = 1/2]\[y_1(x)=\sum_{n=0}^∞{(x-1)^{2+n}\over(n+2)!}=\exp(x-1)-x\]For a second solution, since α1 − α2 = 2 is an integer, we are in Case III, there may or may not be a Frobenius series solution. To find out, we seek a solution \(y(x)=\sum_{k=0}^∞b_k(x-1)^k\), by (1) $b_kk=b_{k-1}⇒b_n=\frac{b_0}{n!}$. The second solution is [set b0 = 1]\[y_2(x)=\sum_{n=0}^∞\frac{(x-1)^n}{n!}=\exp(x-1)\]- The point $x=∞$. Consider the differential equation$$\tag⋆x^3y''(x) + y(x) = 0.$$
- Use the transformation of variables x = 1/t to show that (⋆) has a regular singular point at $x=∞$ and determine the indicial exponents.
- Obtain the first Frobenius solution in the form of an infinite series in powers of t, solving explicitly for the coefficients.
- Find the form of the second Frobenius solution and obtain (but do not attempt to solve) a recurrence relation for the coefficients in the series.
- Suppose we seek a particular solution to (⋆) with the leading behaviour y(x) ∼ x as x → ∞. By considering the magnitude of the various terms in the two series solutions found above, determine the next largest term in the expansion of y(x) for large positive x.
- $y(x)=u(t)⇒y'(x)=-t^2u'(t),y''(x)=2t^3u'(t)+t^4u''(t)$. Plug in $y''(x)+t^3y(x)=0$, divide by t3\[tu''(t)+2u'(t)+u(t)=0\]has a regular singular point at t = 0, so does (⋆) at x = ∞. Seek a solution \(u(t)=\sum_{k=0}^∞a_kt^{α+k}\)\[t\sum_{k=0}^∞(α+k)(α+k-1)a_kt^{α+k-2}+2\sum_{k=0}^∞(α+k)a_kt^{α+k-1}+\sum_{k=0}^∞a_kt^{α+k}=0\]Sort into powers of t\[α(α+1)a_0t^{α-1}+\sum_{k=1}^∞[(α+k)(α+k+1)a_k+a_{k-1}]t^{α+k-1}=0\]Indicial equation α(α + 1) = 0 has roots α1 = 0, α2 = −1.
- Taking $α=0$, solving $(α+k)(α+k+1)a_k+a_{k-1}=0$ [set a0=1] $a_n={(-1)^n\over n!(n+1)!}⇒u_1(x)=\frac{J_1(2\sqrt t)}{\sqrt t}$
- Taking $α=-1$, for $k=1$, the equation $(k-1)k=0$, we're in Case IIIa We seek a solution of the form \(u_2(t)=u_1(t)\log t+\sum_{k=0}^∞b_kt^{k-1}=u_1(t)\log t+b_0t^{-1}+\sum_{k=1}^∞b_kt^{k-1}\) \begin{multline*}t\left(u_1''(t)\log t+2u_1'(t)t^{-1}-u_1(t)t^{-2}+2b_0t^{-3}+\sum_{k=3}^∞b_k(k-1)(k-2)t^{k-3}\right)\\+2\left(u_1'(t)\log t+u_1(t)t^{-1}-b_0t^{-2}+\sum_{k=2}^∞b_k(k-1)t^{k-2}\right)\\+u_1(t)\log t+b_0t^{-1}+\sum_{k=1}^∞b_kt^{k-1}=0\end{multline*}Using $tu_1''(t)+2u_1'(t)+u_1(t)=0$,\[2u_1'(t)+(b_0+u_1(t))t^{-1}+\sum_{k=2}^∞[k(k-1)b_k+b_{k-1}]t^{k-2}=0\]At $O(t^{-1})$ we obtain $b_0+u_1(0)=0⇒b_0=-a_0=-1$. Plug in $u_1=\sum_{k=1}^∞{(-t)^{k-1}\over k!(k-1)!}$\[2\sum_{k=2}^∞{(-1)^{k-1}t^{k-2}\over k!(k-2)!}+\sum_{k=2}^∞{(-1)^{k-1}t^{k-2}\over k!(k-1)!}+\sum_{k=2}^∞[k(k-1)b_k+b_{k-1}]t^{k-2}=0\]Merge 1st and 2nd terms\[\sum_{k=2}^∞\frac{(-1)^k (2k-1)}{k!(k-1)!}t^{k-2}=\sum_{k=2}^∞[k(k-1)b_k+b_{k-1}]t^{k-2}\]We obtain a recurrence relation $k(k-1)b_k+b_{k-1}=\frac{(-1)^k (2k-1)}{k!(k-1)!}$.
- y(x) ∼ x as x → ∞ is equivalent to u(t) ∼ t−1 as t → 0 Since u1(t) ∼ 1, u2(t) ∼ −t−1, we have u(t) = C u1(t) −u2(t) = −u2(t) + O(1) −u2(t) = −u1(t)log(t) − t−1 + O(1) = −log(t) − t−1 + O(1). So the next largest term is log(x).
- Bessel functions. Consider Bessel’s equation (of order n):\[x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,\tag⋆\]for integer n ≥ 0.
- Find the indicial exponents α1, α2 (Re α1 > Re α2) for the local series expansion of (⋆) about x = 0.
- Determine the series $y(x)=∑^∞_{k=0}a_kx^{k+α_1}$ that solves (⋆), giving the coefficients ak in closed form. Find a0 such that the series is the expansion of the Bessel functions of first kind,$$\tag#J_n(x)=\left(x\over2\right)^n\sum_{k=0}^∞\frac{\left(-x^2/4\right)^k}{k!(k+n)!}$$
- Using (#), show that the following recursion relation is true for all integers n ≥ 0:$$J_{n+1}(x)=\frac{2n}xJ_n(x)-J_{n-1}(x)$$
- For any integer n ≥ 0, show that$$\int_0^1x\left[J_n(αx)\right]^2\,dx=\frac12\left[J_n'(α)\right]^2$$where α is any zero of Jn.
- Plug in \(y(x)=\sum_{k=0}^∞a_kx^{α+k}\)\[x^2\sum_{k=0}^∞(α+k)(α+k-1)a_kx^{α+k-2}+x\sum_{k=0}^∞(α+k)a_kx^{α+k-1}+(x^2-n^2)\sum_{k=0}^∞a_kx^{α+k}=0\]Combine coefficients of $x^{α+k}$\[\sum_{k=0}^∞[(α+k)^2-n^2]a_kx^{α+k}+\sum_{k=0}^∞a_kx^{α+k+2}=0\]Shift index in the 2nd term\[\sum_{k=0}^∞[(α+k)^2-n^2]a_kx^{α+k}+\sum_{k=2}^∞a_{k-2}x^{α+k}=0\]The lowest power is xα. The indicial equation α2 − n2 = 0 has solution α1 = n, α2 = −n.
- The coefficient of xn+1 is a1 ⇒ a1 = 0 The coefficient of xn+k (k > 1) is $((n+k)^2-n^2)a_k+a_{k-2}=0⇒a_k=-\frac{a_{k-2}}{k(k+2n)}$ a1 = 0 ⇒ ak = 0 for odd k. $a_{2k}=\frac{(-1)^ka_0}{\prod_{i=1}^k(2i)(2i+2n)}=\frac{(-1)^k2^nn!a_0}{2^{2k+n}k!(k+n)!}⇒$For $a_0=\frac1{2^nn!}$ we get (#).
- For n = 0, we have $J_{-1}(x)=-J_1(x)$ so equality holds. For n ≥ 1,\begin{align*}\frac{2n}xJ_n(x)-J_{n-1}(x)&=n\left(x\over2\right)^{n-1}\sum_{k=0}^∞\frac{\left(-x^2/4\right)^k}{k!(k+n)!}-\left(x\over2\right)^{n-1}\sum_{k=0}^∞(k+n)\frac{\left(-x^2/4\right)^k}{k!(k+n)!}\\&=-\left(x\over2\right)^{n-1}\sum_{k=0}^∞k\frac{\left(-x^2/4\right)^k}{k!(k+n)!}\\&=-\left(x\over2\right)^{n-1}\sum_{k=1}^∞\frac{\left(-x^2/4\right)^k}{(k-1)!(k+n)!} \text{since }k=0\text{ term is 0}\\&=-\left(x\over2\right)^{n-1}\left(-x^2/4\right)\sum_{k=0}^∞\frac{\left(-x^2/4\right)^k}{k!(k+n+1)!} \text{shift }k\\&=\left(x\over2\right)^{n+1}\sum_{k=0}^∞\frac{\left(-x^2/4\right)^k}{k!(k+n+1)!}=J_{n+1}(x)\end{align*}
- If α = 0 then n = 0, $J_n'(0)=0$, equality holds. If α ≠ 0, substitute z = αx, integrate by parts\begin{align*} I&=\int_0^1x[J_n(αx)]^2\,dx \\ &=\frac{1}{α^2}\int_0^αz[J_n(z)]^2\,dz\\ &=\frac{1}{2α^2}\left[z^2J_n(z)^2\right]_0^α-\frac{1}{α^2}\int_0^αz^2J_n(z)J'_n(z)\,dz\\ &=-\frac{1}{α^2}\int_0^αz^2J_n(z)J'_n(z)\,dz \text{since }J_n(α)=0 \end{align*}Since Jn satisfies Bessel’s equation, $z^2J_n=n^2J_n(z)-zJ'_n(z)-z^2J''_n(z)$\begin{align*} I&=-\frac{1}{α^2}\int_0^αJ'_n(z)\left[n^2J_n(z)-zJ'_n(z)-z^2J''_n(z)\right]\,dz\\ &=-\frac{1}{α^2}\left[\frac{n^2}{2}J_n^2(z)|_0^α-\int_0^α\left( zJ'_n(z)+z^2J''_n(z) \right)J_n'(z)\,dz\right]\\ &=\frac{n^2}{2α^2}J_n^2(0)+\frac{1}{α^2}\int_0^α\left( zJ'_n(z)+z^2J''_n(z) \right)J'_n(z)\,dz \text{since $J_n(α)=0$}\\ &=\frac{n^2}{2α^2}J_n^2(0)+\frac{1}{2α^2}\int_0^α\frac{d}{dz}\left( z^2 [J'_n(z)]^2\right)\,dz\\ &=\frac{1}{2}[J_n'(α)]^2 \text{since $J_n(0)=0$ if $n≠0$} \end{align*}
- Bessel functions in a Sturm-Liouville problem.
- Determine the bounded eigenfunctions yj and eigenvalues λj of the following singular Sturm–Liouville problem on 0 ≤ x ≤ 1:\[\left(-xy'(x)\right)'=λxy(x), y(1) = 0.\]
- Use (a) to obtain the eigenfunction expansion for the bounded solution of the following inhomogeneous problem on 0 ≤ x ≤ 1:\[\left(xy'(x)\right)'=x, y(1) = 0.\]Leave the coefficients ck in your final answer in terms of integrals containing Bessel functions.
- Substitute $r=\sqrtλx,y(x)=u(r)$ By chain rule $y'(x)=\sqrtλu'(r)$, $\frac{d}{dx}\left(-xy'(x)\right)=\sqrtλ\frac{d}{dr}\left(-\frac{r}{\sqrtλ}\sqrtλu'(r)\right)=\sqrtλ\frac{d}{dr}\left(-ru'(r)\right)$\[\left(-ru'(r)\right)'=ru(r), u(\sqrtλ) = 0.\]This Bessel equation has bounded solution $u(r)=J_0(r)⇒λ_k=j_{0,k}^2,y_k=J_0(j_{0,k}x)$
- Eigenfunction expansion $y(x)=\sum_{k∈ℕ}c_ky_k(x)$$$c_k=\frac{⟨f,y_k⟩}{λ_k⟨y_k,ry_k⟩}=\frac{-\int_0^1xJ_0(j_{0,k}x)\,dx}{j_{0,k}^2\int_0^1xJ_0(j_{0,k}x)^2\,dx}$$Using 3(d)$\int_0^1xJ_0(j_{0,k}x)^2\,dx=\frac12[J_0'(j_{0,k})]^2=\frac12[J_1(j_{0,k})]^2$
By 6.10 recurrence formulas$$\frac{2n}{x}J_n(x)=J_{n-1}(x)+J_{n+1}(x)\tag1$$and$$2J'_n(x)=J_{n-1}(x)-J_{n+1}(x)\tag2$$we have\begin{align*}
[uJ_1(u)]'&=J_1(u)+uJ_1'(u)\\&\overset{(2)}=J_1(u)+\frac u2J_0(u)-\frac u2J_2(u)\\&\overset{(1)}=J_1(u)+\frac u2J_0(u)-\frac u2\left[\frac2uJ_1(u)-J_0(u)\right]\\&=uJ_0(u)\\⇒\int_0^xuJ_0(u)\,du&=xJ_1(x)\\⇒\int_0^1uJ_0(j_{0,k}u)\,du&=j_{0,k}^{-1}J_1(j_{0,k})\\⇒c_k&=\frac{-j_{0,k}^{-1}J_1(j_{0,k})}{j_{0,k}^2\frac12[J_1(j_{0,k})]^2}\\&=-2j_{0,k}^{-3}[J_1(j_{0,k})]^{-1}\end{align*}The equation has bounded solution $y(x)=\frac14\left(x^2-1\right)$ and we compute $c_k$\[c_k=\frac{\int_0^1\frac14(x^2-1)J_0(j_{0,k}x)x\,dx}{\int_0^1[J_0(j_{0,k}x)]^2x\,dx}\]Two formulas for $c_k$ should match.
Table[NIntegrate[1/4 (x^2-1)x BesselJ[0,x BesselJZero[0,k]],{x,0,1}]/NIntegrate[x BesselJ[0,x BesselJZero[0,k]]^2,{x,0,1}],{k,1,5}] Table[N[-2BesselJZero[0,k]^(-3)/BesselJ[1,BesselJZero[0,k]]],{k,1,5}]
- Legendre functions and associated Legendre functions. Consider Legendre’s equation$$\tag{⋆}\left(1-x^2\right) y''(x)-2 x y'(x)+\left(ℓ(ℓ+1)-\frac{m^2}{1-x^2}\right)y(x)=0$$and let $P_ℓ^m(x)$ denote the solution for integers 0 ≤ m ≤ ℓ. Show that$$\int_{-1}^1P_k^m(x) P_ℓ^m(x) \,dx=\begin{cases}0&\text{ if }ℓ≠k \\\frac2{(2k+1)}\frac{(k+m)!}{(k-m)!}&\text{ if }ℓ=k\end{cases}$$
Write (⋆) in Sturm-Liouville form\[ℒy =-((1-x^2) y')' + \frac{m^2}{1-x^2}y = λ y\]Eigenvalues \(λ_ℓ=ℓ(ℓ+1)\), and eigenfunctions \(P_ℓ^m (x)\) satisfy orthogonality conditions$$\int_{-1}^1P_k^m(x) P_ℓ^m(x) \,dx=0 \text{ if }ℓ≠k$$For $ℓ=k$, let$$𝒜_k^m=\int_{-1}^1 P_k^m(x)^2\,dx $$Substituting 6.3.31a\[P_k^m (x)=(-1)^m(1-x^2)^{\frac m2}\frac{d^mP_k(x)}{dx^m}\]we have$$𝒜_k^m=\int_{-1}^1(1-x^2)^m\left(\frac{d^mP_k(x)}{dx^m}\right)^2\,dx$$Integrating by parts $m$ times, each time $u$ contains the factor $\left(1-x^2\right)$, so boundary term vanishes\begin{align*}𝒜_k^m&=\int_{-1}^1(1-x^2)^m\frac{d^mP_k(x)}{dx^m}\frac{d^mP_k(x)}{dx^m}dx\\&=\left[(1-x^2)^m\frac{d^mP_k(x)}{dx^m}\frac{d^{m-1}P_k(x)}{dx^{m-1}}\right]_{-1}^1-\int_{-1}^1\frac{d}{dm}\left((1-x^2)^m\frac{d^mP_k(x)}{dx^m}\right)\frac{d^{m-1}P_k(x)}{dx^{m-1}}dx\\&=-\int_{-1}^1\frac{d}{dx}\left((1-x^2)^m\frac{d^mP_k(x)}{dx^m}\right)\frac{d^{m-1}P_k(x)}{dx^{m-1}}dx\\&=⋯\\&=(-1)^m\int_{-1}^1\frac{d^m}{dx^m}\left((1-x^2)^m\frac{d^mP_k(x)}{dx^m}\right)P_k(x)\,dx\end{align*}Substituting 6.3.29$$P_k(x)=\frac{(-1)^k}{2^kk!}\frac{d^k}{dx^k}[(1-x^2)^k]$$we get$$𝒜_k^m=\frac{(-1)^m}{2^{2k}(k!)^2}\int_{-1}^1\frac{d^m}{dx^m}\left((1-x^2)^m\frac{d^{k+m}P_k(x)}{dx^{k+m}}\right)\frac{d^k}{dx^k}[(1-x^2)^k]\,dx$$Integrating by parts $k$ times, each time $v$ contains the factor $\left(1-x^2\right)$, so boundary term vanishes$$𝒜_k^m=\frac{(-1)^{k+m}}{2^{2k}(k!)^2}\int_{-1}^1 \frac{d^{k+m}}{dx^{k+m}}\left(\left(1-x^2\right)^m \frac{d^{k+m}}{dx^{k+m}}\left(1-x^2\right)^k \right)\;\left(1-x^2\right)^kdx$$Using Leibniz rule$$\frac{d^{k+m}}{dx^{k+m}}\left(\left(1-x^2\right)^m \frac{d^{k+m}}{dx^{k+m}}\left(1-x^2\right)^k\right)=\sum_{r=0}^{k+m}\binom{k+m}r\frac{d^r}{dx^r}\left(1-x^2\right)^m\frac{d^{2k+2 m-r}}{dx^{2k+2 m-r}}\left(1-x^2\right)^k$$ By definition $m≤k$, so $2m∈[0,k+m]$ $\frac{d^r}{dx^r}\left(1-x^2\right)^m≠0$ when $r≤2 m$ $\frac{d^{2k+2 m-r}}{dx^{2k+2 m-r}}\left(1-x^2\right)^k≠0$ when $2k+2m-r≤k⇔r≥2m$. So the only non-zero term in the sum occurs when $r=2m$.$$𝒜_k^m=\frac{(-1)^{k+m}}{2^{2k}(k!)^2}\binom{k+m}{2m}\int_{-1}^1\left(1-x^2\right)^k \frac{d^{2m}}{dx^{2m}}\left(1-x^2\right)^m\frac{d^{2k}}{dx^{2k}}\left(1-x^2\right)^kdx$$Using $\frac{d^{2m}}{dx^{2m}}\left(1-x^2\right)^m=(-1)^m(2m)!$ and $\frac{d^{2k}}{dx^{2k}}\left(x^2-1\right)^k=(-1)^k(2k)!$ we have$$𝒜_k^m=\frac1{2^{2k}(k!)^2}\frac {\left(2k\right)!(k+m)!}{(k-m)!}\int_{-1}^1\left(1-x^2\right)^k\,dx$$By definition of Beta function $B(a,b)=\int_0^1 t^{a-1}(1-t)^{b-1}dt=\frac{Γ(a)Γ(b)}{Γ(a+b)}$. Substituting $t=\frac{1+x}2$$$\int_{-1}^1\left(1-x^2\right)^k\,dx=2^{2k+1}B(k+1,k+1)=\frac{2^{2k+1}(k!)^2}{\left(2k+1\right)!}$$Therefore we have$$𝒜_k^m=\frac2{(2k+1)}\frac{(k+m)!}{(k-m)!}$$