-
-
Let $\underline{g}:[a-h, a+h]→ℝ^2$ be any continuous function. Show that
\[
\left\|\int_a^x \underline{g}(t) d t\right\|_1≤\left|\int_a^x\left\|\underline{g}(t)\right\|_1 d t\right|
\]
where we define the integral component-wise and where $‖⋅‖_1$ is the 1-norm of vectors in $ℝ^2$, i.e. $\left\|\left(y_1, y_2\right)\right\|_1=\left|y_1\right|+\left|y_2\right|$.
[You may use that if $h:[a-h, a+h]→ℝ$ is continuous then $\left|\int_a^x h(t) d t\right|≤\left|\int_a^x{|h(t)|}d t\right|$.] -
Show that the functions
i) $\underline{f}(x, \underline{y})=\left(\begin{array}{c}x \sin \left(y_2\right)+y_1 \\ y_2^2\end{array}\right)$ ii) $\underline{f}(x, \underline{y}):=\left(\begin{array}{c}y_2 \\ -\frac{y_1^2}{y_2}\end{array}\right)$
- Let $\underline g(t)=\big(g_1(t),g_2(t)\big)$, then\begin{align*} \left\|\int_a^x \underline{g}(t) d t\right\|_1&=\left|\int_a^x g_1(t) d t\right|+\left|\int_a^x g_2(t) d t\right|\\&≤\left|\int_a^x\left|g_1(t)\right|d t\right|+\left|\int_a^x\left|g_2(t)\right|d t\right|\\\small\text{non-negative}&=\left|\int_a^x\left|g_1(t)\right|+\left|g_2(t)\right| d t\right|\\&=\left|\int_a^x\left\|\underline{g}(t)\right\|_1 d t\right| \end{align*}
-
Suppose there exists $L_1,L_2$ such that for $x∈[a-h,a+h]$ and $\underline u,\underline v∈B_k\left(\left(1\atop1\right)\right)$,
\begin{aligned}\left|f_1\left(x, u_1, u_2\right)-f_1\left(x, v_1, v_2\right)\right| &≤L_1\left(\left|u_1-v_1\right|+\left|u_2-v_2\right|\right)\quad\text{and} \\\left|f_2\left(x, u_1, u_2\right)-f_2\left(x, v_1, v_2\right)\right| &≤ L_2\left(\left|u_1-v_1\right|+\left|u_2-v_2\right|\right) \end{aligned}Then
\begin{aligned}\left\|\underline{f}(x, \underline{y})-\underline{f}(x, \underline{\tilde{y}})\right\|_1&=\left|f_1\left(x,y_1,y_2\right)-f_1\left(x,\tilde y_1,\tilde y_2\right)\right|+\left|f_2\left(x,y_1,y_2\right)-f_2\left(x,\tilde y_1,\tilde y_2\right)\right|\\&≤(L_1+L_2)\left(\left|y_1-\tilde y_1\right|+\left|y_2-\tilde y_2\right|\right)\\&=(L_1+L_2)\left\|\underline y-\underline{\tilde y}\right\|_1\end{aligned}
Hence it suffices to prove that the components $f_1$ and $f_2$ of $\underline{f}=\left(\begin{array}{l}f_1 \\ f_2\end{array}\right)$ satisfy a Lipschitz condition.
i) By mean value theorem $\left|\sin u_2-\sin v_2\right|≤\left|u_2-v_2\right|$. For $L_1=\max\{1,h\},L_2=2(1+k)$,\begin{aligned}\left|f_1\left(x, u_1, u_2\right)-f_1\left(x, v_1, v_2\right)\right|&=\left|x\sin u_2+u_1-x\sin v_2-v_1\right|\\&≤\left|x\right|\left|\sin u_2-\sin v_2\right|+\left|u_1-v_1\right|\\&≤h\left|u_2-v_2\right|+\left|u_1-v_1\right|\\\left|f_2\left(x, u_1, u_2\right)-f_2\left(x, v_1, v_2\right)\right|&=\left|u_2^2-v_2^2\right|\\&=\left|u_2+v_2\right|\left|u_2-v_2\right|\\&≤2(1+k)\left|u_2-v_2\right|\\&≤2(1+k)(\left|u_1-v_1\right|+\left|u_2-v_2\right|)\end{aligned} ii) $L_1=1$, $L_2=\max\left\{\frac{2(1+k)}{1-k},\frac{(1+k)^2}{(1-k)^2}\right\}$,\begin{aligned}\left|f_1\left(x, u_1, u_2\right)-f_1\left(x, v_1, v_2\right)\right|&=\left|u_2-v_2\right|\\\left|f_2\left(x, u_1, u_2\right)-f_2\left(x, v_1, v_2\right)\right|&≤\left|f_2\left(x, u_1, u_2\right)-f_2\left(x, v_1, u_2\right)\right|+\left|f_2\left(x, v_1, u_2\right)-f_2\left(x, v_1, v_2\right)\right|\\&=\left|\frac{u_1^2}{u_2}-\frac{v_1^2}{u_2}\right|+\left|\frac{v_1^2}{u_2}-\frac{v_1^2}{v_2}\right|\\&=\frac{\left|u_1+v_1\right|}{u_2}\left|u_1-v_1\right|+\frac{v_1^2}{u_2v_2}\left|u_2-v_2\right|\\&≤\frac{2(1+k)}{1-k}\left|u_1-v_1\right|+\frac{(1+k)^2}{(1-k)^2}\left|u_2-v_2\right|\end{aligned}
-
Let $\underline{g}:[a-h, a+h]→ℝ^2$ be any continuous function. Show that
\[
\left\|\int_a^x \underline{g}(t) d t\right\|_1≤\left|\int_a^x\left\|\underline{g}(t)\right\|_1 d t\right|
\]
where we define the integral component-wise and where $‖⋅‖_1$ is the 1-norm of vectors in $ℝ^2$, i.e. $\left\|\left(y_1, y_2\right)\right\|_1=\left|y_1\right|+\left|y_2\right|$.
- The aim of this question is to fill in the details of the proof of Theorem 1.6 in the lecture on Picard's theorem for a system of two first order ODEs via the CMT.
Let $\underline{f}=\left(f_1, f_2\right): S:=[a-h, a+h]×B_k(\underline{b})→ℝ^2$ be a continuous function which satisfies the Lipschitz-condition \[\tag1 \left\|\underline{f}(x, \underline{y})-\underline{f}(x, \underline{\tilde{y}})\right\|_1≤L\left\|\underline{y}-\underline{\tilde{y}}\right\|_1 \text { for all } x∈[a-h, a+h], \underline{y}, \underline{\tilde{y}}∈B_k(\underline{b}) \] for some $L>0$ and set $M:=\max _{(x, y)\in S}\left\|\underline f(x, \underline{y})\right\|_1$.
Given $0< η≤h$ we let $𝒞_η=C\left([a-η, a+η] ; B_k(\underline{b})\right)$ be the set of continuous functions $y:[a-η, a+η]→B_k(\underline{b}) \subset ℝ^2$, and equip this space with the sup norm defined by \[ {‖\underline{y}‖}_\text{sup}:=\sup _{x∈[a-η, a+η]}{‖\underline{y}(x)‖}_1, \text { for } \underline{y}∈𝒞_η . \] You can use that $\left(𝒞_η,{‖⋅‖}_\text{sup}\right)$ is a complete metric space.- Show that if $Mη≤k$, then the map $T$ which assigns to each function $\underline{y}∈𝒞_η$ the function \[ (T \underline{y})(x)=\underline{b}+\int_a^x \underline{f}(s, \underline{y}(s)) d s \] has the property that $T \underline{y}∈𝒞_η$ for every $\underline{y}∈𝒞_η$. Show furthermore that if $ηL< 1$ then this map is a contraction on $\left(C_η,{‖⋅‖}_\text{sup}\right)$.
- Reformulate the initial value problem \[\tag2\begin{aligned} &y_1'(x)=f_1\left(x, y_1(x), y_2(x)\right) \\ &y_2'(x)=f_2\left(x, y_1(x), y_2(x)\right) \\ &y_1(a)=b_1, \quad y_2(a)=b_2 . \end{aligned}\] as an integral equation for $\underline{y}(x):=\left(\begin{array}{l}y_1(x) \\ y_2(x)\end{array}\right)$. Explain why the CMT and (a) imply that this initial value problem has a unique solution on $[a-η, a+η]$ for suitable $η>0$.
- Define what it means for the solution of (2) to depend continuously on the initial data and show that this holds true.
- Explain why, if the Lipschitz condition (1) holds for all $x∈[a-h, a+h]$ and $\underline{y}, \underline{\tilde{y}}∈ℝ^2$ (instead of only $\underline{y}, \underline{\tilde{y}}∈B_k(\underline{b})$ ), then there is a unique solution on the whole interval $[a-h, a+h]$
- For every $\underline{y}∈𝒞_η$,\[\left\|T\underline{y}-b\right\|_1\overset{\text{Q1}}≤\left|\int_a^x\left\|f(s,\underline{y}(s))\right\|_1ds\right|≤Mη≤k\]Taking sup over $x∈[a-η,a+η]$, we get $T\underline{y}∈B_k(\underline{b})$. By fundamental theorem of calculus, $T\underline{y}$ is continuous, so $T\underline{y}∈𝒞_η$.
By Lipschitz condition,\[\left\|T\underline{y}-T\underline{\tilde y}\right\|_1\overset{\text{Q1}}≤\left|\int_a^x\left\|\underline{f}(s, \underline{y}(s))-\underline{f}(s, \underline{\tilde{y}}(s))\right\|_1ds\right|≤\left|\int_a^xL\left\|\underline{y}-\underline{\tilde{y}}\right\|_1ds\right|≤ηL\left\|\underline{y}-\underline{\tilde{y}}\right\|_1\]Taking sup over $x∈[a-η,a+η]$, we get $\left\|T\underline{y}-T\underline{\tilde y}\right\|_\text{sup}≤ηL\left\|\underline{y}-\underline{\tilde y}\right\|_\text{sup}$ for every $\underline{y},\underline{\tilde y}∈𝒞_η$. If $ηL< 1$, $T$ is a contraction on $\left(C_η,{‖⋅‖}_\text{sup}\right)$. - The IVP can be reformulate as\[\underline y(x)=\underline b+\int_a^x\underline f(x,\underline y(s))ds\]that is, $T\underline y=\underline y$. By (a) and completeness of $\left(𝒞_η,{‖⋅‖}_\text{sup}\right)$ and CMT, $T$ has a unique fixed point, so there is a unique solution for $\underline y$.
- The solution depends continuously on the initial data if $∀ϵ>0$, for solutions $\underline y,\underline{\tilde y}$ with initial data $\underline b,\underline{\tilde b}$ respectively, $\left\|\underline b-\underline{\tilde b}\right\|_1< δ$ implies $\left\|\underline y-\underline {\tilde y}\right\|_\text{sup}< ϵ$.
Proof 1: Take $δ=ϵ(1-Lη)$, \begin{align*}\left\|\underline y-\underline{\tilde y}\right\|_\text{sup}&=\left\|T\underline y-T\underline{\tilde y}\right\|_\text{sup}\\ \small\text{triangle inequality} &≤\left\|\underline b-\underline{\tilde b}\right\|_1+\left\|\int_a^x\underline f(x,\underline y(s))-\underline f(x,\underline{\tilde y}(s))ds\right\|_\text{sup}\\ \small\text{from 2.1.a} &≤δ+Lη\left\|\underline y-\underline{\tilde y}\right\|_\text{sup}\\\\ ⇒(1-Lη)\left\|\underline y-\underline{\tilde y}\right\|_\text{sup}&≤δ\\ ⇒\left\|\underline y-\underline{\tilde y}\right\|_\text{sup}&≤\fracδ{1-Lη}=ϵ \end{align*} Proof 2: As Q1.4b, Gronwall's inequality gives a sharper bound: \begin{align*}\left\|\underline y^{(1)}(x)-\underline y^{(2)}(x)\right\|_1&≤\left\|\underline b^{(1)}-\underline b^{(2)}\right\|_1+\left|\int_a^x\left\|f(s,\underline y^{(1)}(s))-f(s,\underline y^{(2)}(s))\right\|_1ds\right|\\ &≤\left\|\underline b^{(1)}-\underline b^{(2)}\right\|_1+\left|\int_a^xL\left\|\underline y^{(1)}(s)-\underline y^{(2)}(s)\right\|_1ds\right| \end{align*} By Gronwall's inequality, \[\left\|\underline y^{(1)}(s)-\underline y^{(2)}(s)\right\|_1≤\left\|\underline b^{(1)}-\underline b^{(2)}\right\|_1e^{L{|x-a|}}\] Taking $\sup_{s∈[a-η,a+η]}$, \[\left\|\underline y^{(1)}-\underline y^{(2)}\right\|_\text{sup}≤\left\|\underline b^{(1)}-\underline b^{(2)}\right\|_\text{sup}e^{Lη}\] - [Corollary 1.5.]
Proof: We look at $x≥a$ first. If $h< 1 / L$ we are done. (Take $η=h$.) Otherwise we choose $η_1< 1 / L$. Then, from Theorem 1.4, there exists a unique solution, $y_0$ say, on $\left[a, a+η_1\right]$.
Now choose $η_2=\min \left\{2 η_1, h\right\}$, and look for a solution, $y_1$ say, on $\left[a+η_1, a+η_2\right]$, of the ODE with initial data $y_1\left(a+η_1\right)=y_0\left(a+η_1\right)$.
Now define \begin{aligned} &y(x)=y_0(x), x \in\left[a, a+η_1\right] \\ &y(x)=y_1(x), x \in\left[a+η_1, a+η_2\right] \end{aligned} To construct $y_1$: As in Theorem 1.4, but we now work in the space $X_1:=𝒞\left(\left[a+η_1, a+η_2\right] ;[b-k, b+k]\right)$, and take (for $a+η_1≤x≤a+η_2$) \begin{align} \left(T_1 y\right)(x) &=y_0\left(a+η_1\right)+\int_{a+η_1}^x f(s, y(s)) d s\nonumber \\ &=b+\int_a^{a+η_1} f\left(s, y_0(s)\right) d s+\int_{a+η_1}^x f(s, y(s)) d s .\label1 \end{align} So $T_1: X_1 → X_1$ because from \eqref{1} \begin{aligned} \left\|T_1 y-b\right\|_\text{sup}&≤M η_1+M\left(x-\left(a+η_1\right)\right)=M(x-a)≤M η_2 \\ &≤Mh≤k . \end{aligned} Also $T_1$ is a contraction as the proof of claim 2 only requires that the length of the interval we work on, which for $T_1$ is $η_2-η_1$, is less than $1 / L$. Thus we obtain the existence of a unique solution on $\left[a, a+η_2\right]$. Repeating this argument, both in positive and negative direction, we continue to be able to extend the solution and after finitely many steps have reached the endpoint $a+h$ of the original interval, since we can carry out each step except the very last one (where we will be able to choose $η_j=h$ since we'll have $h-η_{j-1}<\frac{1}{L}$ ) with the same 'stepsize' $η_k-η_{k-1}=η_1$.
- Consider the second order differential equation \[\tag3 y''(x)=F\left(x, y(x), y'(x)\right), \text { with initial data } y(a)=c_1, y'(a)=c_2, \] where $F: S:=[a-h, a+h]×B_k(\underline{c})→ℝ$ is a continuous function. Suppose that $F$ satisfies a Lipschitz-condition, i.e. there exists $L$ such that \[ \left|F(x, \underline{y})-F(x, \underline{\tilde{y}})\right|≤L\left\|\underline{y}-\underline{\tilde{y}}\right\|\text { for all }(x, \underline{y}),(x, \underline{y})∈S . \] By writing (3) as a system of first order differential equations, and demonstrating that the conditions of Theorem 1.6 (see question 2.2 above) are satisfied, show that there exists $0< η≤h$ such that (3) has a unique solution on $[a-η, a+η]$.
- Now consider the second order linear differential equation for $y(x)$ \[\tag4p(x) y''+q(x) y'+r(x) y=s(x), \quad x∈[a, b]\] for continuous functions $p, q, r, s:[a, b]→ℝ$. Suppose that $p(x)≠0$ on all of $[a, b]$ and fix any $y_0, y_1∈ℝ$ and $x_0∈[a, b]$. Show that (4) with initial conditions $y\left(x_0\right)=y_0, y'\left(x_0\right)=y_1$ has a unique solution $y$ on $[a, b]$.
-
(Taken from Collins) Consider the problem
\[
y y''=-\left(y'\right)^2, \quad y(0)=y'(0)=1 .
\]
(i) Show that the problem has a unique solution on an interval containing 0.
(ii) Find the solution and state where it exists.
- Let $z=y'$. Write (3) as \begin{cases} y'(x)=z\\ z'(x)=F\left(x, y(x), z(x)\right) \end{cases} Define $\underline f$ by $f_1(x,y,z)=z,f_2(x,y,z)=F(x,y,z)$. Then $\underline f$ is Lipschitz for $1+L$. For $η=\min\left(h,\frac k{\sup F}\right)$, (3) has a unique solution on $[a-η, a+η]$.
- Write the problem as $\underline y'=\underline f(x,\underline y)$ where $$ \underline y=\left(y(x)\atop y'(x)\right), \underline f(x,u,v)=\pmatrix{v\\\frac{s(x)-q(x)v-r(x)u}{p(x)}}. $$ Since $p(x)≠0$, $\underline f$ is continuous on $S$.$$\left|\frac{s(x)-q(x)v_1-r(x)u_1}{p(x)}-\frac{s(x)-q(x)v_2-r(x)u_2}{p(x)}\right|=\left|\frac{q(x)}{p(x)}\right|{|v_1-v_2|}+\left|\frac{r(x)}{p(x)}\right|{|u_1-u_2|}$$$\underline f$ satisfies Lipschitz condition on $S$, so $\underline y(x)$ has a unique solution.
- (i) Let $S=\left[-\frac13,\frac13\right]×\left[\frac13,\frac53\right]$. Write the problem as $\underline y'=\underline f(x,\underline y)$ where
$$
\underline y=\left(y(x)\atop y'(x)\right), \underline f(x,u,v)=\pmatrix{v\\-\frac{v^2}u}.
$$By 2.1.b(ii), $\underline f$ satisfies Lipschitz condition on $S$, so $\underline y(x)$ has a unique solution on $\left[-\frac13,\frac13\right]$.
(ii) $(y^2)''=0⇒y^2$ is a linear function of $x$. Using $y(0)=y'(0)=1$, we have $y^2(0)=1,(y^2)'(0)=2$, so $y^2=2x+1⇒y=\sqrt{2x+1}$
- Consider the plane autonomous system
\[
\frac{d x}{d t}=x(1-2 x-y), \quad \frac{d y}{d t}=y(1-x-2 y) .
\]
- By showing that the axes of the phase plane and the line $x=y$ are solution trajectories explain why a solution starting in the octant $x>0,x< y$ must remain in this region for all time.
- Find all the critical points and analyse them to determine their local behaviour including the local direction of the trajectories and whether the points are stable.
-
Sketch the phase plane.
In an application, when suitably scaled, $x$ and $y$ represent species populations which are in competition for resources. Use the phase plane to interpret what happens to the populations in the long term.
- Substituting $x=0$, we get $\frac{d y}{d t}=y(1-2y)⇒t-\log C=\log{|y|}-\log{|1-2y|}⇒y=\frac{e^t}{C+2e^t}∈(0,\frac12)∪(\frac12,+∞)$. So the line $x=0$ is the union of two trajectories.
Substituting $y=x$, we get $\frac{d x}{d t}=x(1-3x)⇒t-\log C=\log{|x|}-\log{|1-3x|}⇒x=\frac{e^t}{C+3e^t}∈(0,\frac13)∪(\frac13,+∞)$. So the line $y=x$ is the union of two trajectories.
Since different trajectories never intersect, a solution starting in the octant $x>0, x< y$ must remain in this region for all time. - To find all the critical points, we solve $x(1-2 x-y)=0,y(1-x-2 y)=0$. From the first equation, $x=0$ or $y=1-2x$.
If $x=0$, the second equation is $y(1-2y)=0$, so $y=0$ or $y=1/2$.
If $y=1-2x$, the second equation is $(1-2x)(-1+3x)=0$, so $x=1/2$ or $x=1/3$.
So all the critical points are $(0,0)(0,1/2)(1/2,0)(1/3,1/3)$. \begin{array}l M=\begin{pmatrix}X_x&X_y\\Y_x&Y_y\end{pmatrix}=\begin{pmatrix}1-4x-y&-x\\-y&1-x-4y\end{pmatrix}\\ λ_1λ_2=\det M=4x^2+16xy+4y^2-5x-5y+1\\ λ_1+λ_2=\operatorname{tr}M=-5x-5y+2\\ (λ_1-λ_2)^2=(λ_1+λ_2)^2-4λ_1λ_2=9 x^2 - 14 x y + 9 y^2 \end{array} At $(0,0)$, $λ_1=λ_2=1>0,M=I⇒$unstable star
At $(0,1/2)$ and $(1/2,0)$, $λ_1λ_2=-1/2< 0⇒$saddle
At $(1/3,1/3)$, $λ_1λ_2=1/3>0,λ_1+λ_2=-4/3< 0,(λ_1-λ_2)^2=4/9>0⇒λ_1< λ_2< 0⇒$stable node -
\documentclass[tikz,border=2pt]{standalone} \usetikzlibrary{decorations.markings} \begin{document} \begin{tikzpicture}[x=5cm,y=5cm] \newcommand\aaa{ \draw[postaction=decorate,decoration={markings,mark=at position .3 with {\arrow{stealth}},mark=at position .7 with {\arrow{stealth}}}]plot[smooth]coordinates{(1.,0.1)(0.627,0.103)(0.493,0.133)(0.435,0.187)(0.35,0.315)(0.333,0.333)}; \draw[postaction=decorate,decoration={markings,mark=at position .3 with {\arrow{stealth}},mark=at position .7 with {\arrow{stealth}}}]plot[smooth]coordinates{(1.,0.2)(0.613,0.183)(0.481,0.198)(0.457,0.208)(0.417,0.235)(0.343,0.323)}; \draw[postaction=decorate,decoration={markings,mark=at position .5 with {\arrow{stealth}}}]plot[smooth]coordinates{(0,0)(0.2,0.1)(0.307,0.178)(0.351,0.233)(0.361,0.256)(0.36,0.293)(0.339,0.328)}; \draw[postaction=decorate,decoration={markings,mark=at position .3 with {\arrow{stealth}},mark=at position .7 with {\arrowreversed{stealth}}}]plot[smooth]coordinates{(0,0)(0.5,0)(1,0)}; } \draw[postaction=decorate,decoration={markings,mark=at position .25 with {\arrow{stealth}},mark=at position .75 with {\arrowreversed{stealth}}}](0,0)--(2/3,2/3); \draw[gray](0,1/2)--(1,0)(0,1)--(1/2,0); \aaa\begin{scope}[cm={0,1,1,0,(0,0)}]\aaa\end{scope} \end{tikzpicture} \end{document} VectorPlot[{x(1-2x-y), y(1-x-2y)}, {x, -0.5, 1}, {y, -0.5, 1}]
(1/3,1/3) is the only stable node, so two populations are equal in the long term. Competitive Lotka–Volterra equations
-
-
Find and classify the types of all critical points of the system
\[
\frac{d x}{d t}=\left(a-x^2\right) y, \quad \frac{d y}{d t}=x-y,
\]
in each of the cases
(i) $a<-\frac14$
(ii) $-\frac14< a< 0$
(iii) $a>0$. -
Consider the case $a=-1/4$ and analyse in detail the behaviour at all the critical points. Hence sketch the phase plane in this case.
Can you say anything about the trajectories in this case for $|x|$ large? - Consider the case $a=1/2$ and analyse in detail the behaviour at all the critical points. Hence sketch the phase plane in this case.
Solution.
-
Find and classify the types of all critical points of the system
\[
\frac{d x}{d t}=\left(a-x^2\right) y, \quad \frac{d y}{d t}=x-y,
\]
in each of the cases
- If $a< 0$ and $(a-x^2)y=x-y=0$, then $a-x^2< 0$, so $y=0$, so $(0,0)$ is the only critical point; If $a>0$, the critical points are $(0,0)(\sqrt a,\sqrt a)(-\sqrt a,-\sqrt a)$.
\begin{array}l
M=\begin{pmatrix}X_x&X_y\\Y_x&Y_y\end{pmatrix}=\begin{pmatrix}-2xy&a-x^2\\1&-1\end{pmatrix}\\
λ_1λ_2=\det M=x^2+2xy-a\\
λ_1+λ_2=\operatorname{tr}M=-2xy-1\\
(λ_1-λ_2)^2=(λ_1+λ_2)^2-4λ_1λ_2=4 x^2 y^2-4xy-4x^2+4a+1
\end{array}
(i) At $(0,0)$, $λ_1λ_2=-a>0,λ_1+λ_2=-1< 0,(λ_1-λ_2)^2=4a+1< 0⇒$conjugate pair, $μ< 0⇒$stable spiral
(ii) At $(0,0)$, $λ_1λ_2=-a>0,λ_1+λ_2=-1< 0,(λ_1-λ_2)^2=4a+1>0⇒0>λ_1>λ_2⇒$stable node
(iii) At $(0,0)$, $λ_1λ_2=-a< 0⇒λ_1< 0< λ_2⇒$saddle
At $(\sqrt a,\sqrt a)$ and $(-\sqrt a,-\sqrt a)$, $λ_1λ_2=2a>0,λ_1+λ_2=-2a-1< 0,(λ_1-λ_2)^2=(2a-1)^2≥0$.
If $a≠1/2$, we have $0>λ_1>λ_2⇒$stable node; if $a=1/2$, we have $0>λ_1=λ_2$, but $Y_x=1$, so $M≠λI$, there is a stable inflected node. - At (0,0), $λ_1=λ_2=-1/2,M=\pmatrix{0 & -\frac14 \\1 & -1}$, so $M≠λI$, there is a stable inflected node.
eigenvector: $v=\pmatrix{1\\2}$. When $|x|$ large, $\pmatrix{x\\y}∼c_1te^{-t/2}\pmatrix{1\\2}$.
phase plane: See the figure produced by Matlab - At (0,0), $M=\pmatrix{0&\frac12\\1&-1},λ_1=\frac{-1-\sqrt3}2,λ_2=\frac{-1+\sqrt3}2⇒$saddle. eigenvectors: $v_1=\pmatrix{\frac{1-\sqrt3}2\\1},v_2=\pmatrix{\frac{1+\sqrt3}2\\1}$.
At $\left(\frac1{\sqrt2},\frac1{\sqrt2}\right)$ and $\left(-\frac1{\sqrt2},-\frac1{\sqrt2}\right)$, $λ_1=λ_2=-1,M=\pmatrix{-1 & 0 \\1 & -1}$, so $M≠λI$, there is a stable inflected node. eigenvector: $\pmatrix{0\\1}$.
phase plane: See the figure produced by Matlab