Probability paper 2022

 
    1. Let $Z_n,n≥1$, be random variables and $c∈ℝ$. Show that $Z_n→c$ in probability if and only if $Z_n→c$ in distribution.
    2. Fix $λ∈(0,∞)$. For each $r∈(0,∞)$, consider a random variable $X_r$ with probability density function $$ f_{r,λ}(x)=\begin{cases}\frac{1}{Γ(r)}x^{r-1}λ^r e^{-λ x},&x∈(0,∞),\\0,&\text { otherwise. }\end{cases} $$ Recall that this means that $X_r$ has the Gamma distribution with shape parameter $r$ and rate parameter $λ$.
      1. Carefully derive the moment generating function of $X_r$.
      2. Show that $X_r/r$ converges in distribution as $r→∞$. Does this convergence hold in probability?
        [You may use standard theorems about moment generating functions without proof.]
      1. Define the Poisson process $\left(N_t,t≥0\right)$ of rate $λ∈(0,∞)$ in terms of properties of its increments over disjoint time intervals.
      2. Show that the first arrival time $T_1=\inf\left\{t≥0:N_t=1\right\}$ is exponentially distributed with parameter $λ∈(0,∞)$.
      3. Show that $T_n=\inf\left\{t≥0:N_t=n\right\}$ has a Gamma distribution for all $n≥1$.
        [If you use the inter-arrival time definition of the Poisson process, you are expected to prove that it is equivalent to the definition given in (i).]
      4. Let $R_n,n≥1$, be independent Gamma$(n,λ)$ random variables.
        Let $Y_t=\#\left\{n≥1:R_n≤t\right\},t≥0$. Show that $Y_t$ is not a Poisson process with rate $λ$, but does satisfy $ℙ\left(Y_t<∞\text{ for all }t≥0\right)=1$.
        [Hint: Let $B_n=1_{\left\{R_n≤t\right\}}$ and write $Y_t=\sum_{n≥1}B_n$.]
    1. State the Central Limit Theorem.
    2. Let $(R,S)$ be a pair of random variables with joint probability density function $$ f(r,s)=\begin{cases}\frac{1}{4}e^{-{|s|}},&(r,s)∈[-1,1]×ℝ\\0,&\text { otherwise. }\end{cases} $$ Also consider independent identically distributed random variables $\left(R_n,S_n\right),n≥1$, with the same joint distribution as $(R,S)$.
      1. Find the marginal probability density functions of $R$ and $S$.
      2. For any $s∈ℝ$, determine $$ \lim _{n→∞}ℙ\left(\frac{1}{\sqrt{n\operatorname{var}(S)}}\sum_{k=1}^n S_n≤s\right) $$
      3. For any $r,s∈ℝ$, show that $$ \lim _{n→∞}ℙ\left(\frac{1}{\sqrt{n\operatorname{var}(R)}}\sum_{k=1}^n R_n≤r,\frac{1}{\sqrt{n\operatorname{var}(S)}}\sum_{k=1}^n S_n≤s\right)=ℙ(W≤r,Z≤s) $$ for a pair of random variables $(W,Z)$ whose joint distribution you should determine.
    3. Consider the transformation $T:ℝ^2→ℝ^2$ given by $T(x,y)=(x-y,x+y)$. Let $(R,S)$ be as in (b) and $(X,Y)$ such that $(R,S)=T(X,Y)$.
      1. Derive the joint probability density function of $(X,Y)$.
      2. Find the marginal probability density functions of $X$ and $Y$.
      3. Find the correlation of $X$ and $Y$.
    1. Consider a Markov chain on a countable state space $S$ and let $i ∈ S$.
      1. Define the notions of recurrence and positive recurrence of $i$.
      2. Suppose that $i$ is positive recurrent. State, without proof, the ergodic theorem for the long-term proportion of time the Markov chain spends in state $i$.
    2. An urn contains a total of $N ≥ 2$ balls, some white and the others black. Each step consists of two parts. A first ball is chosen at random and removed. A second ball is then chosen at random from those remaining. It is returned to the urn along with a further ball of the same colour. Denote by $Y_n$ the number of white balls after $n ≥ 0$ steps.
      1. Explain briefly why $\left(Y_n, n ≥ 0\right)$ is a Markov chain and determine its state space and transition matrix.
      2. Determine the communicating classes of this Markov chain and say whether their states are recurrent, and whether they are aperiodic. Justify your answers.
      3. Find all stationary distributions of this Markov chain.
    3. Now consider a Markov chain $\left(Z_n, n ≥ 0\right)$, on $I=\{0,1,2, …, N\}$ with the transition matrix $P$ whose non-zero entries are $$ p_{k, j}= \begin{cases}\frac{N-k}{N} \frac{k+1}{N+1} & \text { if } j=k+1, \\ \frac{N-k}{N} \frac{N-k}{N+1}+\frac{k}{N} \frac{k}{N+1} & \text { if } j=k, \\ \frac{k}{N} \frac{N-k+1}{N+1} & \text { if } j=k-1 .\end{cases} $$
      1. Show that the uniform distribution is stationary for this Markov chain. Hence, or otherwise, determine all stationary distributions of this Markov chain.
      2. For a state $k ∈ I$, consider the successive visits $$ V_1^{(k)}=\inf \left\{n ≥ 1: Z_n=k\right\}   \text { and }   V_{m+1}^{(k)}=\inf \left\{n ≥ V_m^{(k)}+1: Z_n=k\right\},   m ≥ 1 . $$ Explain why visits to $k$ occur in groups of independent geometrically distributed consecutive visits, and determine the parameter of this geometric distribution.
      3. Determine the expected time between two groups of visits to state $k$.
      4. Is the following statement true or false? ‘For any two states $k_1 ≠ k_2$, there is, on average, one visit to $k_2$ between the first and second visits to $k_1$.’ Provide a proof or counterexample.

Solution

    1. [Sheet 1 Q6] If $Z_n\overset d→c$, since $F_c$ is continuous on $ℝ∖\{c\}$, for any $ϵ>0$, \begin{align*} ℙ\left(\left|Z_n-c\right|≥ϵ\right) &=ℙ\left(Z_n≤c-ϵ\right) +ℙ\left(Z_n≥c+ϵ\right)\\ &= F_{Z_n}(c-ϵ)+1-F_{Z_n}(c+ϵ)\\&→0+1-1=0.\text{ So }Z_n\overset P→c.\end{align*}If $Z_n\overset P→c$, we need to prove for any $ϵ>0$, $F_{Z_n}(c-ϵ)→0,F_{Z_n}(c+ϵ)→1$.\[ℙ(Z_n≤c-ϵ)≤ℙ(\left|Z_n-c\right|>ϵ)→0\]So $F_{Z_n}(c-ϵ)→0$\[ℙ(Z_n≥c+ϵ)≤ℙ(\left|Z_n-c\right|>ϵ)→0\]So $F_{Z_n}(c+ϵ)→1$
      1. [Sheet 2 Q2] for $t<λ$,\begin{align*}M_{X_r}(t)&=∫_0^∞e^{tx}\frac1{Γ(r)} λ^r x^{r-1} e^{-λ x}dx\\ &=\frac{λ^r}{(λ-t)^r}∫_0^∞\underbrace{\frac1{Γ(r)}(λ-t)^r x^{r-1} e^{-(λ-t)x}}_{\text{p.d.f for }Γ(r, λ-t)}dx\\ &=\left(1-\frac tλ\right)^{-r}\end{align*}
      2. For $t<rλ:M_{X_r/r}(t)=M_{X_r}\left(t\over r\right)=\left(1-\frac t{rλ}\right)^{-r}→e^{t/λ}$
        By convergence theorem $X_r/r\overset d→1/λ$.
        By (a), $X_r/r\overset p→1/λ$.
      1. The counting process $N_t, t ≥ 0$ is a Poisson process of rate $λ$ if:
        1. $N_0=0$.
        2. If $\left(s_1, t_1\right),\left(s_2, t_2\right), …,\left(s_k, t_k\right)$ are disjoint intervals in $ℝ_{+}$, then the increments $N\left(s_1, t_1\right]$, $N\left(s_2, t_2\right], …, N\left(s_k, t_k\right]$ are independent, where $N\left(s_i, t_i\right]=N_{t_i}-N_{s_i}$.
        3. For any $s<t$, the increment $N(s, t]$ has Poisson distribution with mean $λ(t-s)$.
      2. $0=N_0≤N_1≤⋯≤N_t$, so $T_1>t⇔N_0=⋯=N_t=0⇔N_t=0$
        $N_t∼\operatorname{Poisson}(λt)⇒ℙ(T_1>t)=ℙ(N_t=0)=e^{-λt}⇒T_1∼\operatorname{Exp}(λ)$.
      3. Let $X_n∼\operatorname{Gamma}(n,λ)$. By Taylor's formula with integral remainder, \[e^{λt}=\sum_{k=0}^{n-1}\frac{(λt)^k}{k!}+∫_0^t\frac{1}{(n-1)!}x^{n-1}λ^n e^{λ(t-x)}dx\]Therefore \begin{split}ℙ(X_n≤t)&=∫_0^t\frac{1}{(n-1)!}x^{n-1}λ^n e^{-λx}dx\\&=1-e^{-λt}\sum_{k=0}^{n-1}\frac{(λt)^k}{k!}\end{split} On the other hand, $ℙ(T_n≤t)=ℙ(N_t≥n)=1-e^{-λt}\sum_{k=0}^{n-1}\frac{(λt)^k}{k!}$. So $T_n=X_n$.
      4. In Poisson process $ℙ(T_1>T_2)=0$ so $T_1,T_2$ are not independent, but $R_1,R_2$ are independent, so $Y_t$ is not a Poisson process.
        Let $B_n=1_{\left\{R_n≤t\right\}}$ and write $Y_t=\sum_{n≥1}B_n$ \begin{split}𝔼[Y_t]&=\sum_{n≥1}𝔼[B_n]\\&=\sum_{n≥1}ℙ(R_n≤t)\\&=\sum_{n≥1}∫_0^t\frac{1}{(n-1)!}x^{n-1}λ^n e^{-λx}dx\\&=∫_0^t\sum_{n≥1}\frac{1}{(n-1)!}x^{n-1}λ^n e^{-λx}dx\\&=∫_0^tλdx=λt<∞\end{split}So $ℙ\left(Y_t<∞\text{ for all }t≥0\right)=1$
    1. Let $X_1,X_2,…$ be i.i.d. random variables with mean $μ$ and variance $σ^2∈(0,∞)$.
      Let $S_n=X_1+X_2+⋯+X_n$. Then ${S_n-nμ\over\sqrt nσ}\stackrel d→N(0,1)$ as $n→∞$.
      1. $f_R(r)=∫ f(r,s)\mathrm{~d}s=2∫_0^∞\frac14e^{-s}\mathrm{~d}s=\frac12$ for $r∈[-1,1]$; otherwise $f_R(r)=0$
        $f_S(s)=∫f(r,s)\mathrm{~d}r=∫_{-1}^1\frac14e^{-{|s|}}\mathrm{~d}r=\frac12e^{-{|s|}}$
      2. $𝔼[S]=∫_{-∞}^∞s\frac12e^{-{|s|}}\mathrm{~d}s=0$, by symmetry$$\operatorname{var}(S)=𝔼\left[S^2\right]=2∫_0^∞s^2\frac{1}{2}e^{-s}d s=2<∞$$$S_n$ are iid with mean 0, and variance 2, by CLT $\frac1{\sqrt{2n}}\sum_{k=1}^n S_n\stackrel d→Z$. For all $s∈ℝ$$$ℙ\left(\frac1{\sqrt{2n}}\sum_{k=1}^n S_n≤s\right)→ℙ(Z≤s),\text{ where $Z∼N(0,1)$.}$$
      3. $R∼U[-1,1]⇒𝔼(R)=0$, $\operatorname{var}(R)=\frac13<∞$. $R_n$ are iid, by CLT\[ℙ\left(\sqrt{\frac3n}\sum_{k=1}^n R_n≤r\right)→ℙ(W≤r),\text{ where $W∼N(0,1)$.}\]$\operatorname{cov}(R,S)=𝔼[RS]=∫rsf(r,s)=2∫_{-∞}^∞\frac14se^{-{|s|}}\mathrm{~d}s=0$, so $R,S$ are independent.\begin{multline*} ℙ\left(\frac{1}{\sqrt{n\operatorname{var}(R)}}\sum_{k=1}^n R_n≤r,\frac{1}{\sqrt{n\operatorname{var}(S)}}\sum_{k=1}^n S_n≤s\right)\\=ℙ\left(\frac{1}{\sqrt{n\operatorname{var}(R)}}\sum_{k=1}^n R_n≤r\right)ℙ\left(\frac{1}{\sqrt{n\operatorname{var}(S)}}\sum_{k=1}^n S_n≤s\right)\\→ℙ(W≤r)ℙ(Z≤s)=ℙ(W≤r,Z≤s)\text{, where }W,Z\stackrel{\text{iid}}∼N(0,1) \end{multline*}
      1. $\left|\frac{∂(R,S)}{∂(X,Y)}\right|=\begin{vmatrix}1&-1\\1&1\end{vmatrix}=2$. By the transformation formula, $(X,Y)$ has joint pdf\[f_{X,Y}(x,y)=2f_{R,S}(T(X,Y))=\begin{cases}\frac{1}{2} e^{-{|x+y|}} & \text { if }{|x-y|}≤1 \\ 0 & \text { otherwise. }\end{cases}\]
      2. Fix $y$ then $f_{X,Y}(x,y)>0⇔x∈[y-1, y+1]$. (horizontal section of the region)
        If ${|y|}≥\frac12$, $x+y≥0$ for $x∈[y-1, y+1]$,\begin{aligned} f_Y(y) & =\int_{y-1}^{y+1} \frac{1}{2} e^{-{|x+y|}} d x\\ & =\frac{1}{2}\left(e-e^{-1}\right) e^{-2{|y|}} \end{aligned}If ${|y|}≤\frac12$, $x+y$ changes sign at $x=-y$,\begin{aligned} f_Y(y) &=\int_{y-1}^{-y}\frac{1}{2} e^{x+y} d x+\int_{-y}^{y+1}\frac{1}{2} e^{-x-y} d x\\ & =1-e^{-1}\cosh (2 y) \end{aligned}
      3. In b(iii) we found cov$(R,S)=0$,$$\operatorname{cov}(X, Y)=\operatorname{cov}\left(\frac{R+S}2, \frac{S-R}2\right)=\frac{1}{4}(\operatorname{var}S-\operatorname{var}R)=\frac14(2-\frac13)=\frac{5}{12}$$correlation coefficient\[\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}=\frac{\frac5{12}}{\sqrt{\frac7{12}\frac7{12}}}=\frac57\]
      1. $i$ is recurrent$⇔ℙ_i(X_n=i\text{ for some }n≥1)=1⇔ℙ_i(\inf\{n≥1:X_n=i\}<∞)=1$
        $i$ is positive recurrent$⇔m_i=𝔼_i(\inf\{n≥1:X_n=i\})<∞$
      2. Let $V_i(n)$ be the number of visits to state $i$ before time $n$. Then for any initial distribution, ${V_i(n)\over n}→\frac1{m_i}$ almost surely.
      1. $(Y_n,n≥0)$ satisfy Markov property: For any $t_0$, the distribution of $(Y_n, n>n_0)$ is independent of $(Y_n, n ≤ n_0)$.
        Total number of balls is $N$, so $Y_n$ has $N+1$ states $0,…,N$. If $Y_n=k$, four cases
        WW→WW $Y_{n+1}=k$ $\frac kN\frac{k-1}{N-1}$
        WB→BB $Y_{n+1}=k-1$ $\frac kN\frac{N-k}{N-1}$
        BW→WW $Y_{n+1}=k+1$ $\frac{N-k}N\frac{k}{N-1}$
        BB→BB $Y_{n+1}=k$ $\frac{N-k}N\frac{N-k-1}{N-1}$
        So the non-zero entries of the transition matrix are $$ p_{k, j}= \begin{cases}\frac{k}{N} \frac{N-k}{N-1} & \text { if } j=k-1,k>0\\\frac{k}{N} \frac{k-1}{N-1} +\frac{N-k}{N} \frac{N-k-1}{N-1}& \text { if } j=k\\\frac{N-k}{N} \frac{k}{N-1} & \text { if } j=k+1,k<N\end{cases} $$
      2. $0,N$ are absorbing states (aperiodic, recurrent)
        The rest form a communicating class, since $p_{i, i-1}=p_{i, i+1}>0$ for $1 ≤ i ≤ N-1$
        This is transient, since it has positive probability to escape to $0,N$
      3. For π to be stationary, we need\begin{eqnarray*}π_0&=&π_0+\frac1Nπ_1⇒π_1=0\\π_N&=&π_N+\frac1Nπ_{N-1}⇒π_{N-1}=0\\π_i&=&p_{i-1,i}π_{i-1}+p_{i,i}π_i+p_{i+1,i}π_{i+1}⇒π_i=0\text{ for }0<i<N\end{eqnarray*}So $(λ, 0,0, …, 0,1-λ), 0 ≤ λ ≤ 1$ are stationary distributions.
      1. For π to be stationary, we need\begin{split} π_0&=π_0p_{0,0}+π_1p_{1,0}\\ π_N&=π_{N-1}p_{N-1,N}+π_Np_{N,N}\\ π_j&=π_{j-1} p_{j-1, j}+π_j p_{j, j}+π_{j+1} p_{j+1, j}\text{ for }0 ≤ j ≤ N \end{split} We check the uniform distribution $π_i=1 /(N+1), 0 ≤ i ≤ N$ is a solution.\begin{array}l \frac1{N+1}=\frac1{N+1}\frac{N}{N+1}+\frac1{N+1}\frac1{N+1}\\ \frac1{N+1}=\frac1{N+1}\frac1{N+1}+\frac1{N+1}\frac{N}{N+1}\\ \frac1{N+1}=\frac1{N+1}\frac{k}{N} \frac{N-k+1}{N+1}+\frac1{N+1}\left(\frac{N-k}{N} \frac{N-k}{N+1}+\frac{k}{N} \frac{k}{N+1}\right)+\frac1{N+1} \frac{N-k}{N} \frac{k+1}{N+1}\text{ for }0 ≤ j ≤ N\end{array} This chain is irreducible: $p_{0,1}>0;p_{N,N-1}>0;p_{i, i-1}=p_{i, i+1}>0\text{ for }1 ≤ i ≤ N-1$.
        By uniqueness theorem, uniform distribution is the only stationary distribution.
      2. Let $i$ be the number of consecutive visits to $k$. By the Markov property,\begin{split}&ℙ(Z_{n+i}≠k,Z_{n+i-1}=k,…,Z_{n+1}=k|Z_n=k)\\&=ℙ(Z_{n+i}≠k|Z_{n+i-1}=k)…ℙ(Z_{n+1}=k|Z_n=k)\\&=(1-p_{k,k})p_{k,k}^{i-1}\end{split}so $i$ has geometric distribution with success probability $1-p_{k,k}$
      3. By Theorem 6.3(b) $1/π_k=m_k$, $m_k$ is the mean return time to state $k$.
        By the Law of Total Probability, \begin{split} N+1&=𝔼_k\left[V_1^{(k)} ∣ Z_1≠k\right] ℙ(Z_1≠k)+𝔼_k\left[V_1^{(k)} ∣ Z_1=k\right] ℙ\left(Z_1=k\right)\\&=x (1-p_{k,k})+p_{k,k}\\&⇒x=1+\frac N{1-p_{k,k}} \end{split}
      4. I don't understand