-
- Explain what it means for a sequence of random variables $Y_1, Y_2, \ldots$ to converge to a random variable $Y$
- in probability;
- in distribution.
- Prove that convergence in probability implies convergence in distribution.
- Explain what it means for a sequence of random variables $Y_1, Y_2, \ldots$ to converge to a random variable $Y$
- Let $\left(α_k, k=1,2,3, \ldots\right)$ be a probability distribution on the positive integers (that is, $α_k⩾0$ for all $k$, and $\sum α_k=1$).
Consider a Markov chain $X=\left(X_n, n⩾0\right)$ with state space $\{1,2,3, \ldots\}$ whose transition probabilities are given by
$$
\begin{aligned}
p_{i, i-1} & =1 \text { for } i>1, \\
p_{1, k} & =α_k \text { for } k=1,2,3, \ldots .
\end{aligned}
$$
That is, the chain always steps down by 1 unless it is in state 1; when it is in state 1, it chooses its next state according to the distribution $\left(α_k\right)$.
- What does it mean for a Markov chain to be irreducible?
It has only 1 communicating class i.e. ∀state $i,j$ both $i→j$ and $j→i$ hold.
- Under what condition on the distribution $\left(α_k\right)$ is the chain $X$ described above irreducible?
∃ infinitely many $k$ such $α_k>0$ i.e. $∀n,∃k>n$ such that $α_k>0$.
- Suppose the chain is irreducible. Under what condition on the distribution $\left(α_k\right)$ is the chain aperiodic?
$1=\gcd\{k|α_k>0,k=1,2,…\}$
- Suppose the chain is irreducible. By considering the mean return time to 1, or otherwise, determine under what condition on the distribution $\left(α_k\right)$ the chain is positive recurrent. Give an interpretation of this condition in terms of a well-known function of the distribution $\left(α_k\right)$.
$m_1=α_1⋅m_1+α_2⋅m_2+α_3⋅m_3+⋯=α_1⋅0+α_2⋅1+α_3⋅2+⋯<∞$
interpretation: mean of $(α_k)$ is finite
- Find the stationary distribution of the chain if $M⩾2$ and
$$
α_k= \begin{cases}\frac1M & \text { for } k=1,2, \ldots, M, \\ 0 & \text { for } k>M .\end{cases}
$$
[You may assume that the stationary distribution is unique. Note that if $\left(π_i, i⩾1\right)$ is the stationary distribution then $π_i=0$ for all $i>M$.]
\[A=\pmatrix{0&\frac1m&\frac1m&⋯&\frac1m\\1&0\\&1&0\\&&1&0\\&&&⋱}\]π is stationary if $πA=π⇒\cases{π_M=\frac1Mπ_1\\π_{M-1}=\frac1Mπ_1+π_M\\π_{M-2}=\frac1Mπ_1+π_{M-1}\\⋮\\π_2=\frac1Mπ_1+π_2}⇒π_{M-k}=\frac{k+1}Mπ_1$
$∑π_k=1⇒\frac{π_1}M∑(k+1)=1⇒π_1=\frac2{M+1},π_{M-k}=\frac{k+1}M⋅\frac2{M+1}$
- Now let
$$
α_k= \begin{cases}\left(\frac{1}{2}\right)^{k / 2} & \text { for } k \text { even } \\ 0 & \text { for } k \text { odd }\end{cases}
$$
i.e. $\left(α_k, k⩾1\right)=\left(0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, \ldots\right)$.
By considering the mean return time to 1, or otherwise, find the limit points of the sequence $\Pr\left(X_n=1 \mid X_0=1\right)$ as $n→∞$.
Mean return time$$\sum_{k≥1}kα_k=2×\text{mean Geometric}(\frac12)=4$$
limit points: odd times at an even number\[\Pr(X_n=1|X_0=1,n\text{ odd})=0\]$Y_k=X_{2k}$ lives on $\{1,3,5,7,…\}$ mean return time to 1 for $y$ is 2\[\lim_{n→∞}\Pr(Y_n=X_{2n}=1|X_0=1)=\frac1{\text{mean return time }y→1}=\frac12\]
- What does it mean for a Markov chain to be irreducible?
-
- Define the moment generating function of a random variable. If $X_i, i⩾1$ are i.i.d. with moment generating function $M(t)$, find the moment generating function of the random variable $S_n=X_1+\cdots+X_n$ in terms of $M(t)$.
$𝔼(e^{tX})=M_X(t)$
$S_n=\sum_{i=1}^nX_i$
\begin{align*}M_{S_n}(t)&=𝔼(e^{t\sum_{i=1}^nX_i})\\&=𝔼(\prod_{i=1}^ne^{tX_i})\\&=\prod_{i=1}^n𝔼(e^{tX_i})\\&=M_{X_1}(t)^n\end{align*}
For the rest of the question, let $X_i, i⩾1$ be i.i.d. with distribution given by
$$
\Pr\left(X_i=1\right)=\Pr\left(X_i=-1\right)=1 / 2
$$
and let $S_n=X_1+\cdots+X_n$ as above.
- State Chebyshev's inequality, for a general random variable with mean $\mu$ and variance $\sigma^2$. Use it to give an upper bound on the quantity $\Pr\left(\left|S_n\right|⩾a n\right)$ where $a>0$.
Putting $𝔼[X_i]=0,\operatorname{Var}(X_i)=1$ into Chebyshev $\Pr(|Y-𝔼(Y)|≥ϵ)≤\frac{\operatorname{Var}(Y)}{ϵ^2}$
$𝔼(S_n)=∑𝔼(X_i)=0,\operatorname{Var}(S_n)=n$
$\Pr(|S_n|≥an)≤\frac{\operatorname{Var}(S_n)}{a^2n^2}=\frac1{a^2n}$
- Find the moment generating function $M(t)$ of $X_i$.
$M(t)=\frac12e^{-t}+\frac12e^t$
By comparing the Taylor expansions of $M(t)$ and $\exp \left(t^2 / 2\right)$ or otherwise, show that $$ M(t) ⩽ \exp \left(t^2 / 2\right) \text { for all } t . $$Since $\frac1{(2k)!}≤\frac1{k!2^k}$
Use part (a) to deduce a corresponding bound on the moment generating function of $S_n$.\[M_{S_n}(t)=M(t)^n≤\exp \left(nt^2 / 2\right)\] - Let $a>0$. By applying Markov's inequality to an appropriate random variable, use the bound in (b)(ii) to show that for any $t$
$$
\Pr\left(S_n⩾a n\right) ⩽ \exp \left(n\left\{\frac{t^2}{2}-a t\right\}\right) .
$$
Deduce that
$$
\Pr\left(\left|S_n\right|⩾a n\right) ⩽ 2 \exp \left(-\frac{n a^2}{2}\right)
$$
$\Pr\left(S_n⩾a n\right)⩽\exp(n(\frac{t^2}2-at))$
Markov's inequality $\Pr\left(S_n⩾a n\right)=\Pr\left(e^{tS_n}⩾e^{ta n}\right)≤\frac{𝔼(e^{tS_n})}{e^{tan}}≤\frac{e^{\frac{n}2t^2}}{e^{tan}}$
$X$ symmetric about 0 ⇒ $S$ symmetric about 0 ⇒ $\Pr(S_n≥an)=\Pr(S_n≤-an)$
- Define the moment generating function of a random variable. If $X_i, i⩾1$ are i.i.d. with moment generating function $M(t)$, find the moment generating function of the random variable $S_n=X_1+\cdots+X_n$ in terms of $M(t)$.