Probability exercises

 
    1. Explain what it means for a sequence of random variables $Y_1, Y_2, \ldots$ to converge to a random variable $Y$
      1. in probability;
      2. in distribution.
    2. Prove that convergence in probability implies convergence in distribution.
    Proof. Wikipedia Recall that in order to prove convergence in distribution, one must show that the sequence of cumulative distribution functions converges to the $F_X$ at every point where $F_X$ is continuous. Let $a$ be such a point. For every ε > 0, due to the preceding lemma, we have: \begin{aligned}\Pr(X_n\leq a)&\leq \Pr(X\leq a+ε)+\Pr(\left|X_n-X\right|>ε)\\\Pr(X\leq a-ε)&\leq \Pr(X_n\leq a)+\Pr(\left|X_n-X\right|>ε)\end{aligned} So, we have $$ \Pr(X\leq a-ε)-\Pr\left(\left|X_n-X\right|>ε\right)\leq \Pr(X_n\leq a)\leq \Pr(X\leq a+ε)+\Pr\left(\left|X_n-X\right|>ε\right). $$ Taking the limit as $n → ∞$, we obtain: $$ F_{X}(a-ε)\leq \lim _{n\to \infty }\Pr (X_n\leq a)\leq F_{X}(a+ε), $$ where $F_X(a) =\Pr(X ≤ a)$ is the cumulative distribution function of $X$. This function is continuous at $a$ by assumption, and therefore both $F_X(a-ε)$ and $F_X(a+ε)$ converge to $F_X(a)$ as $ε → 0^+$. Taking this limit, we obtain $$ \lim _{n\to \infty }\Pr(X_n\leq a)=\Pr(X\leq a), $$ which means that $\{X_n\}$ converges to $X$ in distribution.
  1. Let $\left(α_k, k=1,2,3, \ldots\right)$ be a probability distribution on the positive integers (that is, $α_k⩾0$ for all $k$, and $\sum α_k=1$). Consider a Markov chain $X=\left(X_n, n⩾0\right)$ with state space $\{1,2,3, \ldots\}$ whose transition probabilities are given by $$ \begin{aligned} p_{i, i-1} & =1 \text { for } i>1, \\ p_{1, k} & =α_k \text { for } k=1,2,3, \ldots . \end{aligned} $$ That is, the chain always steps down by 1 unless it is in state 1; when it is in state 1, it chooses its next state according to the distribution $\left(α_k\right)$.
    1. What does it mean for a Markov chain to be irreducible?

      It has only 1 communicating class i.e. ∀state $i,j$ both $i→j$ and $j→i$ hold.

    2. Under what condition on the distribution $\left(α_k\right)$ is the chain $X$ described above irreducible?

      ∃ infinitely many $k$ such $α_k>0$ i.e. $∀n,∃k>n$ such that $α_k>0$.

    3. Suppose the chain is irreducible. Under what condition on the distribution $\left(α_k\right)$ is the chain aperiodic?

      $1=\gcd\{k|α_k>0,k=1,2,…\}$

    4. Suppose the chain is irreducible. By considering the mean return time to 1, or otherwise, determine under what condition on the distribution $\left(α_k\right)$ the chain is positive recurrent. Give an interpretation of this condition in terms of a well-known function of the distribution $\left(α_k\right)$.

      $m_1=α_1⋅m_1+α_2⋅m_2+α_3⋅m_3+⋯=α_1⋅0+α_2⋅1+α_3⋅2+⋯<∞$

      interpretation: mean of $(α_k)$ is finite

    5. Find the stationary distribution of the chain if $M⩾2$ and $$ α_k= \begin{cases}\frac1M & \text { for } k=1,2, \ldots, M, \\ 0 & \text { for } k>M .\end{cases} $$ [You may assume that the stationary distribution is unique. Note that if $\left(π_i, i⩾1\right)$ is the stationary distribution then $π_i=0$ for all $i>M$.]

      \[A=\pmatrix{0&\frac1m&\frac1m&⋯&\frac1m\\1&0\\&1&0\\&&1&0\\&&&⋱}\]π is stationary if $πA=π⇒\cases{π_M=\frac1Mπ_1\\π_{M-1}=\frac1Mπ_1+π_M\\π_{M-2}=\frac1Mπ_1+π_{M-1}\\⋮\\π_2=\frac1Mπ_1+π_2}⇒π_{M-k}=\frac{k+1}Mπ_1$

      $∑π_k=1⇒\frac{π_1}M∑(k+1)=1⇒π_1=\frac2{M+1},π_{M-k}=\frac{k+1}M⋅\frac2{M+1}$

    6. Now let $$ α_k= \begin{cases}\left(\frac{1}{2}\right)^{k / 2} & \text { for } k \text { even } \\ 0 & \text { for } k \text { odd }\end{cases} $$ i.e. $\left(α_k, k⩾1\right)=\left(0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, \ldots\right)$. By considering the mean return time to 1, or otherwise, find the limit points of the sequence $\Pr\left(X_n=1 \mid X_0=1\right)$ as $n→∞$.

      Mean return time$$\sum_{k≥1}kα_k=2×\text{mean Geometric}(\frac12)=4$$

      limit points: odd times at an even number\[\Pr(X_n=1|X_0=1,n\text{ odd})=0\]$Y_k=X_{2k}$ lives on $\{1,3,5,7,…\}$ mean return time to 1 for $y$ is 2\[\lim_{n→∞}\Pr(Y_n=X_{2n}=1|X_0=1)=\frac1{\text{mean return time }y→1}=\frac12\]

    1. Define the moment generating function of a random variable. If $X_i, i⩾1$ are i.i.d. with moment generating function $M(t)$, find the moment generating function of the random variable $S_n=X_1+\cdots+X_n$ in terms of $M(t)$.

      $𝔼(e^{tX})=M_X(t)$

      $S_n=\sum_{i=1}^nX_i$

      \begin{align*}M_{S_n}(t)&=𝔼(e^{t\sum_{i=1}^nX_i})\\&=𝔼(\prod_{i=1}^ne^{tX_i})\\&=\prod_{i=1}^n𝔼(e^{tX_i})\\&=M_{X_1}(t)^n\end{align*}
    2. For the rest of the question, let $X_i, i⩾1$ be i.i.d. with distribution given by $$ \Pr\left(X_i=1\right)=\Pr\left(X_i=-1\right)=1 / 2 $$ and let $S_n=X_1+\cdots+X_n$ as above.
    3. State Chebyshev's inequality, for a general random variable with mean $\mu$ and variance $\sigma^2$. Use it to give an upper bound on the quantity $\Pr\left(\left|S_n\right|⩾a n\right)$ where $a>0$.

      Putting $𝔼[X_i]=0,\operatorname{Var}(X_i)=1$ into Chebyshev $\Pr(|Y-𝔼(Y)|≥ϵ)≤\frac{\operatorname{Var}(Y)}{ϵ^2}$

      $𝔼(S_n)=∑𝔼(X_i)=0,\operatorname{Var}(S_n)=n$

      $\Pr(|S_n|≥an)≤\frac{\operatorname{Var}(S_n)}{a^2n^2}=\frac1{a^2n}$

    4. Find the moment generating function $M(t)$ of $X_i$.

      $M(t)=\frac12e^{-t}+\frac12e^t$

      By comparing the Taylor expansions of $M(t)$ and $\exp \left(t^2 / 2\right)$ or otherwise, show that $$ M(t) ⩽ \exp \left(t^2 / 2\right) \text { for all } t . $$

      Since $\frac1{(2k)!}≤\frac1{k!2^k}$

      Use part (a) to deduce a corresponding bound on the moment generating function of $S_n$.\[M_{S_n}(t)=M(t)^n≤\exp \left(nt^2 / 2\right)\]
    5. Let $a>0$. By applying Markov's inequality to an appropriate random variable, use the bound in (b)(ii) to show that for any $t$ $$ \Pr\left(S_n⩾a n\right) ⩽ \exp \left(n\left\{\frac{t^2}{2}-a t\right\}\right) . $$ Deduce that $$ \Pr\left(\left|S_n\right|⩾a n\right) ⩽ 2 \exp \left(-\frac{n a^2}{2}\right) $$

      $\Pr\left(S_n⩾a n\right)⩽\exp(n(\frac{t^2}2-at))$

      Markov's inequality $\Pr\left(S_n⩾a n\right)=\Pr\left(e^{tS_n}⩾e^{ta n}\right)≤\frac{𝔼(e^{tS_n})}{e^{tan}}≤\frac{e^{\frac{n}2t^2}}{e^{tan}}$

      $X$ symmetric about 0 ⇒ $S$ symmetric about 0 ⇒ $\Pr(S_n≥an)=\Pr(S_n≤-an)$