Accumulation points of accumulation points of accumulation points

 
Let $A'$ denote the set of accumulation points of $A$. Find a subset $A$ of $\Bbb R^2$ such that $A, A', A'', A'''$ are all distinct.
Hint: Work backwards. Start with some set, then add a sequence which converges to each point, then add a sequence which converges to each of the points in that set, and so on.
Do this carefully and you can make sure that $A$ is such set.
If you are familiar with the concept of ordinals, then you can also consider the ordinal $\omega^4$ embedded into the real numbers. \begin{array}r •&•&•&•&•&•&⟶&•\\ ↑&↑&↑&↑&↑&↑\\ {\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•\\ {\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•\\ {\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•\\ {\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•&{\color{red}•••→}•\\ \end{array}