Gauss's lemma

 

Gauss’s lemma Let \(p\) be an odd prime, \(q\) be an integer coprime to \(p\). Take the least residues of \( Q=\{q, 2q,\cdots,\frac{p-1}{2} q \} \), i.e. reduce them to integers in \( [0, p-1] \). Let \(u\) be the number of members in this set that are greater than \(p/2\). Then

\[ (\frac{q}{p})=(-1)^u \]

Proof. Q has exactly \( \frac{p-1}{2} \) elements since \( (p, q)=1 \) and \( p \) is a prime.We can rewrite Q to integers in \( [-\frac{p-1}{2},\frac{p-1}{2}] \) by rewriting all \( [o_i]_p : o_i>\frac{p-1}{2} \) into \( [-u_i]_p : u_i=p-o_i \land u_i\leq \frac{p-1}{2} \).

\begin{align*} &\implies \prod_{t=1}^{\frac{p-1}{2}}tq\equiv q^{\frac{p-1}{2}}\cdot {\frac{p-1}{2}}!\equiv{\frac{p-1}{2}}! \cdot (-1)^u \mod p \\ &\implies (\frac{q}{p}) \equiv q^{\frac{p-1}{2}} \equiv (-1)^u \mod p \tag*{(By Euler's Criterion)} \end{align*}

Corollary Let p be an odd prime. Then

\begin{equation*} (\frac{2}{p})= \begin{cases} 1 & \text{if } p\equiv1 \lor 7 \mod 8 \\ -1 & \text{if } p\equiv3 \lor 5 \mod 8 \end{cases} \end{equation*}

Proof. Because \( 2\cdot\frac{p-1}{2}=p-1<p \), we only need to find out the cut-off point

\[ n:2n\leq\frac{p-1}{2} \land 2(n+1)>\frac{p-1}{2} \implies n=[\frac{p-1}{4}] \implies u=\frac{p-1}{2}-n=\lceil \frac{p-1}{4} \rceil \]
  1. \( p=8k+1 \implies u=\lceil \frac{8k}{4} \rceil=2k \implies (\frac{p-1}{2})=1 \)
  2. \( p=8k+3 \implies u=\lceil \frac{8k+2}{4} \rceil=2k+1 \implies (\frac{p-1}{2})=-1 \)
  3. \( p=8k+5 \implies u=\lceil \frac{8k+4}{4} \rceil=2k+1 \implies (\frac{p-1}{2})=-1 \)
  4. \( p=8k+7 \implies u=\lceil \frac{8k+6}{4} \rceil=2k+2 \implies (\frac{p-1}{2})=1 \)