方法1.\begin{align}
\int\frac{\cos2x}{\cos3x}\mathrm d x
&=\int\frac{\cos2x}{\cos3x\cos x}\mathrm d\sin x\\
&=\int\frac{\cos2x}{(-3+4\cos^2x)\cos^2x}\mathrm d\sin x\\
&=\int\frac{1-2t^2}{(1-4t^2)(1-t^2)}\mathrm d t\\
&=\frac16\int\left( \frac2{1-2t}+\frac2{1+2t}+\frac1{1+t}+\frac1{1-t} \right)\mathrm d t\\
&=\frac16\ln\left| \frac{(1+2t)(1+t)}{(1-2t)(1-t)} \right|+C\\
&=\frac16\ln\left| \frac{(1+2\sin x)(1+\sin x)}{(1-2\sin x)(1-\sin x)} \right|+C.
\end{align}方法2. Mathematica
WolframAlpha["Integrate[Cos[2x]Sec[3x],x]", "PodCells", PodStates -> {"IndefiniteIntegral__Step-by-step solution"}][[2]]
方法3. 使用欧拉公式,$\cos2x\sec3x=\frac{e^{2ix}+e^{-2ix}}{e^{3ix}+e^{-3ix}}$.作代换$u=e^{-ix},\mathrm dx=iu\mathrm du$.
$\int\frac{u^2+u^{-2}}{u^3+u^{-3}}u^{-1}~\mathrm du=\int\frac{u^4+1}{u^6+1}~\mathrm du=\frac23\int\frac{\mathrm du}{u^2+1}+\frac13\int\frac{u^2+1}{u^4-u^2+1}\mathrm du=\frac23\arctan u+\frac13\arctan\frac u{1-u^2}+C$.
所以$\int\cos2x\sec3x~\mathrm dx=\frac{2i}3\arctan e^{-ix}+\frac i3\arctan\frac{e^{-ix}}{1-e^{-2ix}}+C$.
如果利用恒等式$i\arctan x=\frac12\log\frac{1+x}{1-x}$化简的话,应该会得出,和上面的结果是相等的.