∫cos(2x)sec(3x)

 
方法1.\begin{align} \int\frac{\cos2x}{\cos3x}\mathrm d x &=\int\frac{\cos2x}{\cos3x\cos x}\mathrm d\sin x\\ &=\int\frac{\cos2x}{(-3+4\cos^2x)\cos^2x}\mathrm d\sin x\\ &=\int\frac{1-2t^2}{(1-4t^2)(1-t^2)}\mathrm d t\\ &=\frac16\int\left( \frac2{1-2t}+\frac2{1+2t}+\frac1{1+t}+\frac1{1-t} \right)\mathrm d t\\ &=\frac16\ln\left| \frac{(1+2t)(1+t)}{(1-2t)(1-t)} \right|+C\\ &=\frac16\ln\left| \frac{(1+2\sin x)(1+\sin x)}{(1-2\sin x)(1-\sin x)} \right|+C. \end{align}方法2. Mathematica
WolframAlpha["Integrate[Cos[2x]Sec[3x],x]", "PodCells", PodStates -> {"IndefiniteIntegral__Step-by-step solution"}][[2]]
Take the integral: cos ( 2 x ) sec ( 3 x ) d x Write   cos ( 2 x ) sec ( 3 x )   as   cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) sin 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x )   =   ( cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) sin 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) ) d x Integrate   the   sum   term   by   term   and   factor   out   constants:    =   sin 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x ⁠  Multiply   numerator   and   denominator   of   sin 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x )   by   cot ( x ) csc 3 ( x )   =   cot ( x ) csc ( x ) 3 cot 2 ( x ) cot 4 ( x ) d x + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x ⁠  Prepare   to   substitute   u = csc ( x )   Rewrite   cot ( x ) csc ( x ) 3 cot 2 ( x ) cot 4 ( x )   using   cot 2 ( x ) = csc 2 ( x ) 1   =   cot ( x ) csc ( x ) 4 + 5 csc 2 ( x ) csc 4 ( x ) d x + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x For   the   integrand   cot ( x ) csc ( x ) 4 + 5 csc 2 ( x ) csc 4 ( x )   substitute   u = csc ( x )   and   d u = cot ( x ) csc ( x )    d x   =   1 u 4 + 5 u 2 4 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x For   the   integrand   1 u 4 + 5 u 2 4   use   partial   fractions:    =   ( 1 6 ( u 1 ) 1 6 ( u + 1 ) + 1 12 ( u + 2 ) 1 12 ( u 2 ) ) d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x Integrate   the   sum   term   by   term   and   factor   out   constants:    =   1 12 1 u + 2 d u + 1 6 1 u + 1 d u 1 6 1 u 1 d u + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x For   the   integrand   1 u + 2   substitute   s = u + 2   and   d s =      d u   =   1 12 1 s d s + 1 6 1 u + 1 d u 1 6 1 u 1 d u + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x The   integral   of   1 s   is   log ( s )   =   log ( s ) 12 + 1 6 1 u + 1 d u 1 6 1 u 1 d u + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x For   the   integrand   1 u + 1   substitute   p = u + 1   and   d p =      d u   =   log ( s ) 12 + 1 6 1 p d p 1 6 1 u 1 d u + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x The   integral   of   1 p   is   log ( p )   =   log ( p ) 6 log ( s ) 12 1 6 1 u 1 d u + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x For   the   integrand   1 u 1   substitute   w = u 1   and   d w =      d u   =   log ( p ) 6 log ( s ) 12 1 6 1 w d w + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x The   integral   of   1 w   is   log ( w )   =   log ( p ) 6 log ( s ) 12 log ( w ) 6 + 1 12 1 u 2 d u + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x For   the   integrand   1 u 2   substitute   v = u 2   and   d v =      d u   =   log ( p ) 6 log ( s ) 12 log ( w ) 6 + 1 12 1 v d v + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x The   integral   of   1 v   is   log ( v )   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x ) d x ⁠  Multiply   numerator   and   denominator   of   cos 2 ( x ) cos 3 ( x ) 3 sin 2 ( x ) cos ( x )   by   csc 2 ( x ) sec ( x )   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + cot ( x ) csc ( x ) 3 cot 2 ( x ) d x ⁠  Prepare   to   substitute   z 1 = csc ( x )   Rewrite   cot ( x ) csc ( x ) 3 cot 2 ( x )   using   cot 2 ( x ) = csc 2 ( x ) 1   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + cot ( x ) csc ( x ) 4 csc 2 ( x ) d x For   the   integrand   cot ( x ) csc ( x ) 4 csc 2 ( x )   substitute   z 1 = csc ( x )   and   d z 1 = cot ( x ) csc ( x )    d x   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 4 z 1 2 d z 1 Factor   4   from   the   denominator:    =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 4 ( 1 z 1 2 4 ) d z 1 Factor   out   constants:    =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 4 1 1 z 1 2 4 d z 1 For   the   integrand   1 1 z 1 2 4   substitute   z 2 = z 1 2   and   d z 2 = 1 2    d z 1   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 2 1 1 z 2 2 d z 2 The   integral   of   1 1 z 2 2   is   tanh 1 ( z 2 )   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 2 tanh 1 ( z 2 ) + constant  Substitute   back   for   z 2 = z 1 2   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 2 tanh 1 ( z 1 2 ) + constant  Substitute   back   for   z 1 = csc ( x )   =   log ( p ) 6 log ( s ) 12 + log ( v ) 12 log ( w ) 6 + 1 2 coth 1 ( 2 sin ( x ) ) + constant  Substitute   back   for   v = u 2   =   log ( p ) 6 log ( s ) 12 + 1 12 log ( u 2 ) log ( w ) 6 + 1 2 coth 1 ( 2 sin ( x ) ) + constant  Substitute   back   for   w = u 1   =   log ( p ) 6 log ( s ) 12 + 1 12 log ( u 2 ) 1 6 log ( u 1 ) + 1 2 coth 1 ( 2 sin ( x ) ) + constant  Substitute   back   for   p = u + 1   =   log ( s ) 12 + 1 12 log ( u 2 ) 1 6 log ( u 1 ) + 1 6 log ( u + 1 ) + 1 2 coth 1 ( 2 sin ( x ) ) + constant  Substitute   back   for   s = u + 2   =   1 12 log ( u 2 ) 1 6 log ( u 1 ) + 1 6 log ( u + 1 ) 1 12 log ( u + 2 ) + 1 2 coth 1 ( 2 sin ( x ) ) + constant  Substitute   back   for   u = csc ( x )   =   1 12 log ( csc ( x ) 2 ) 1 6 log ( csc ( x ) 1 ) + 1 6 log ( csc ( x ) + 1 ) 1 12 log ( csc ( x ) + 2 ) + 1 2 coth 1 ( 2 sin ( x ) ) + constant  Factor   the   answer   a   different   way:    =   1 12 ( log ( csc ( x ) 2 ) 2 log ( csc ( x ) 1 ) + 2 log ( csc ( x ) + 1 ) log ( csc ( x ) + 2 ) + 6 coth 1 ( 2 sin ( x ) ) ) + constant  An   alternative   form   of   the   integral   is:    =   1 12 ( log ( csc ( x ) 2 csc ( x ) + 2 ) + 6 coth 1 ( 2 sin ( x ) ) + 4 coth 1 ( csc ( x ) ) ) + constant  方法3. 使用欧拉公式,$\cos2x\sec3x=\frac{e^{2ix}+e^{-2ix}}{e^{3ix}+e^{-3ix}}$.作代换$u=e^{-ix},\mathrm dx=iu\mathrm du$.
$\int\frac{u^2+u^{-2}}{u^3+u^{-3}}u^{-1}~\mathrm du=\int\frac{u^4+1}{u^6+1}~\mathrm du=\frac23\int\frac{\mathrm du}{u^2+1}+\frac13\int\frac{u^2+1}{u^4-u^2+1}\mathrm du=\frac23\arctan u+\frac13\arctan\frac u{1-u^2}+C$.
所以$\int\cos2x\sec3x~\mathrm dx=\frac{2i}3\arctan e^{-ix}+\frac i3\arctan\frac{e^{-ix}}{1-e^{-2ix}}+C$.
如果利用恒等式$i\arctan x=\frac12\log\frac{1+x}{1-x}$化简的话,应该会得出,和上面的结果是相等的.