The princeton companion to mathematics Jan 01, 2020 The Princeton Companion to MathematicsContentsPrefaceContributorsPart I IntroductionI.1 What Is Mathematics About?I.2 The Language and Grammar of MathematicsI.3 Some Fundamental Mathematical Definitions I.4 The General Goals of Mathematical ResearchPart II The Origins of Modern MathematicsII.1 From Numbers to Number SystemsII.2 GeometryII.3 The Development of Abstract AlgebraII.4 AlgorithmsII.5 The Development of Rigor in Mathematical AnalysisII.6 The Development of the Idea of ProofII.7 The Crisis in the Foundations of MathematicsPart III Mathematical ConceptsIII.1 The Axiom of ChoiceIII.2 The Axiom of DeterminacyIII.3 Bayesian AnalysisIII.4 Braid GroupsIII.5 BuildingsIII.6 Calabi–Yau ManifoldsIII.7 CardinalsIII.8 CategoriesIII.9 Compactness and Compactification III.10 Computational Complexity ClassesIII.11 Countable and Uncountable SetsIII.12 C*-AlgebrasIII.13 CurvatureIII.14 DesignsIII.15 DeterminantsIII.16 Differential Forms and IntegrationIII.17 DimensionIII.18 DistributionsIII.19 DualityIII.20 Dynamical Systems and ChaosIII.21 Elliptic CurvesIII.22 The Euclidean Algorithm and Continued FractionsIII.23 The Euler and Navier–Stokes EquationsIII.24 ExpandersIII.25 The Exponential and Logarithmic FunctionsIII.26 The Fast Fourier TransformIII.27 The Fourier TransformIII.28 Fuchsian GroupsIII.29 Function SpacesIII.30 Galois GroupsIII.31 The Gamma FunctionIII.32 Generating FunctionsIII.33 GenusIII.34 GraphsIII.35 HamiltoniansIII.36 The Heat EquationIII.37 Hilbert SpacesIII.38 Homology and CohomologyIII.39 Homotopy GroupsIII.40 The Ideal Class GroupIII.41 Irrational and Transcendental NumbersIII.42 The Ising ModelIII.43 Jordan Normal FormIII.44 Knot PolynomialsIII.45 K-TheoryIII.46 The Leech LatticeIII.47 L-FunctionsIII.48 Lie TheoryIII.49 Linear and Nonlinear Waves and SolitonsIII.50 Linear Operators and Their PropertiesIII.51 Local and Global in Number TheoryIII.52 The Mandelbrot SetIII.53 ManifoldsIII.54 MatroidsIII.55 MeasuresIII.56 Metric SpacesIII.57 Models of Set TheoryIII.58 Modular ArithmeticIII.59 Modular FormsIII.60 Moduli SpacesIII.61 The Monster GroupIII.62 Normed Spaces and Banach SpacesIII.63 Number FieldsIII.64 Optimization and Lagrange MultipliersIII.65 OrbifoldsIII.66 OrdinalsIII.67 The Peano AxiomsIII.68 Permutation GroupsIII.69 Phase TransitionsIII.70 Ď€III.71 Probability DistributionsIII.72 Projective SpaceIII.73 Quadratic FormsIII.74 Quantum ComputationIII.75 Quantum GroupsIII.76 Quaternions, Octonions, and Normed Division AlgebrasIII.77 RepresentationsIII.78 Ricci FlowIII.79 Riemann SurfacesIII.80 The Riemann Zeta FunctionIII.81 Rings, Ideals, and ModulesIII.82 SchemesIII.83 The Schrödinger EquationIII.84 The Simplex AlgorithmIII.85 Special FunctionsIII.86 The SpectrumIII.87 Spherical HarmonicsIII.88 Symplectic ManifoldsIII.89 Tensor ProductsIII.90 Topological SpacesIII.91 TransformsIII.92 Trigonometric FunctionsIII.93 Universal CoversIII.94 Variational MethodsIII.95 VarietiesIII.96 Vector BundlesIII.97 Von Neumann AlgebrasIII.98 WaveletsIII.99 The Zermelo–Fraenkel AxiomsPart IV Branches of MathematicsIV.1 Algebraic NumbersIV.2 Analytic Number TheoryIV.3 Computational Number TheoryIV.4 Algebraic GeometryIV.5 Arithmetic GeometryIV.6 Algebraic TopologyIV.7 Differential TopologyIV.8 Moduli SpacesIV.9 Representation TheoryIV.10 Geometric and Combinatorial Group TheoryIV.11 Harmonic AnalysisIV.12 Partial Differential EquationsIV.13 General Relativity and the Einstein EquationsIV.14 DynamicsIV.15 Operator AlgebrasIV.16 Mirror SymmetryIV.17 Vertex Operator AlgebrasIV.18 Enumerative and Algebraic CombinatoricsIV.19 Extremal and Probabilistic CombinatoricsIV.20 Computational ComplexityIV.21 Numerical AnalysisIV.22 Set TheoryIV.23 Logic and Model TheoryIV.24 Stochastic ProcessesIV.25 Probabilistic Models of Critical PhenomenaIV.26 High-Dimensional Geometry and Its Probabilistic AnaloguesPart V Theorems and ProblemsV.1 The ABC ConjectureV.2 The Atiyah–Singer Index TheoremV.3 The Banach–Tarski ParadoxV.4 The Birch–Swinnerton-Dyer ConjectureV.5 Carleson’s TheoremV.6 The Central Limit TheoremV.7 The Classification of Finite Simple GroupsV.8 Dirichlet’s TheoremV.9 Ergodic TheoremsV.10 Fermat’s Last TheoremV.11 Fixed Point TheoremsV.12 The Four-Color TheoremV.13 The Fundamental Theorem of AlgebraV.14 The Fundamental Theorem of ArithmeticV.15 Gödel’s TheoremV.16 Gromov’s Polynomial-Growth TheoremV.17 Hilbert’s NullstellensatzV.18 The Independence of the Continuum HypothesisV.19 InequalitiesV.20 The Insolubility of the Halting ProblemV.21 The Insolubility of the QuinticV.22 Liouville’s Theorem and Roth’s TheoremV.23 Mostow’s Strong Rigidity TheoremV.24 The P versus NP ProblemV.25 The PoincarĂ© ConjectureV.26 The Prime Number Theorem and the Riemann HypothesisV.27 Problems and Results in Additive Number TheoryV.28 From Quadratic Reciprocity to Class Field TheoryV.29 Rational Points on Curves and the Mordell ConjectureV.30 The Resolution of SingularitiesV.31 The Riemann–Roch TheoremV.32 The Robertson–Seymour TheoremV.33 The Three-Body ProblemV.34 The Uniformization TheoremV.35 The Weil ConjecturesPart VI MathematiciansVI.1 Pythagoras (ca. 569 b.c.e.–ca. 494 b.c.e.)VI.2 Euclid (ca. 325 b.c.e.–ca. 265 b.c.e.)VI.3 Archimedes (ca. 287 b.c.e.–212 b.c.e.)VI.4 Apollonius (ca. 262 b.c.e.–ca. 190 b.c.e.)VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī (800–847)VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170–ca. 1250)VI.7 Girolamo Cardano (1501–1576)VI.8 Rafael Bombelli (1526–after 1572)VI.9 François Viète (1540–1603)VI.10 Simon Stevin (1548–1620)VI.11 RenĂ© Descartes (1596–1650)VI.12 Pierre Fermat (160?–1665)VI.13 Blaise Pascal (1623–1662)VI.14 Isaac Newton (1642–1727)VI.15 Gottfried Wilhelm Leibniz (1646–1716)VI.16 Brook Taylor (1685–1731)VI.17 Christian Goldbach (1690–1764)VI.18 The Bernoullis (.. 18th century)VI.19 Leonhard Euler (1707–1783)VI.20 Jean Le Rond d’Alembert (1717–1783)VI.21 Edward Waring (ca. 1735–1798)VI.22 Joseph Louis Lagrange (1736–1813)VI.23 Pierre-Simon Laplace (1749–1827)VI.24 Adrien-Marie Legendre (1752–1833)VI.25 Jean-Baptiste Joseph Fourier (1768–1830)VI.26 Carl Friedrich Gauss (1777–1855)VI.27 SimĂ©on-Denis Poisson (1781–1840)VI.28 Bernard Bolzano (1781–1848)VI.29 Augustin-Louis Cauchy (1789–1857)VI.30 August Ferdinand Möbius (1790–1868)VI.31 Nicolai Ivanovich Lobachevskii (1792–1856)VI.32 George Green (1793–1841)VI.33 Niels Henrik Abel (1802–1829)VI.34 János Bolyai (1802–1860)VI.35 Carl Gustav Jacob Jacobi (1804–1851)VI.36 Peter Gustav Lejeune Dirichlet (1805–1859)VI.37 William Rowan Hamilton (1805–1865)VI.38 Augustus De Morgan (1806–1871)VI.39 Joseph Liouville (1809–1882)VI.40 Ernst Eduard Kummer (1810–1893)VI.41 Évariste Galois (1811–1832)VI.42 James Joseph Sylvester (1814–1897)VI.43 George Boole (1815–1864)VI.44 Karl Weierstrass (1815–1897)VI.45 Pafnuty Chebyshev (1821–1894)VI.46 Arthur Cayley (1821–1895)VI.47 Charles Hermite (1822–1901)VI.48 Leopold Kronecker (1823–1891)VI.49 Georg Friedrich Bernhard Riemann (1826–1866)VI.50 Julius Wilhelm Richard Dedekind (1831–1916)VI.51 Émile LĂ©onard Mathieu (1835–1890)VI.52 Camille Jordan (1838–1922)VI.53 Sophus Lie (1842–1899)VI.54 Georg Cantor (1845–1918)VI.55 William Kingdon Clifford (1845–1879)VI.56 Gottlob Frege (1848–1925)VI.57 Christian Felix Klein (1849–1925)VI.58 Ferdinand Georg Frobenius (1849–1917)VI.59 Sofya (Sonya) Kovalevskaya (1850–1891)VI.60 William Burnside (1852–1927)VI.61 Jules Henri PoincarĂ© (1854–1912)VI.62 Giuseppe Peano (1858–1932)VI.63 David Hilbert (1862–1943)VI.64 Hermann Minkowski (1864–1909)VI.65 Jacques Hadamard (1865–1963)VI.66 Ivar Fredholm (1866–1927)VI.67 Charles-Jean de la VallĂ©e Poussin (1866–1962)VI.68 Felix Hausdor. (1868–1942)VI.69 Élie Joseph Cartan (1869–1951)VI.70 Emile Borel (1871–1956)VI.71 Bertrand Arthur William Russell (1872–1970)VI.72 Henri Lebesgue (1875–1941)VI.73 Godfrey Harold Hardy (1877–1947)VI.74 Frigyes (FrĂ©dĂ©ric) Riesz (1880–1956)VI.75 Luitzen Egbertus Jan Brouwer (1881–1966)VI.76 Emmy Noether (1882–1935)VI.77 WacĹ‚aw SierpĂnski (1882–1969)VI.78 George Birkhoff (1884–1944)VI.79 John Edensor Littlewood (1885–1977)VI.80 Hermann Weyl (1885–1955)VI.81 Thoralf Skolem (1887–1963)VI.82 Srinivasa Ramanujan (1887–1920)VI.83 Richard Courant (1888–1972)VI.84 Stefan Banach (1892–1945)VI.85 Norbert Wiener (1894–1964)VI.86 Emil Artin (1898–1962)VI.87 Alfred Tarski (1901–1983)VI.88 Andrei Nikolaevich Kolmogorov (1903–1987)VI.89 Alonzo Church (1903–1995)VI.90 William Vallance Douglas Hodge (1903–1975)VI.91 John von Neumann (1903–1957)VI.92 Kurt Gödel (1906–1978)VI.93 AndrĂ© Weil (1906–1998)VI.94 Alan Turing (1912–1954)VI.95 Abraham Robinson (1918–1974)VI.96 Nicolas Bourbaki (1935–)Part VII The Influence of MathematicsVII.1 Mathematics and ChemistryVII.2 Mathematical BiologyVII.3 Wavelets and ApplicationsVII.4 The Mathematics of Traffic in NetworksVII.5 The Mathematics of Algorithm DesignVII.6 Reliable Transmission of InformationVII.7 Mathematics and CryptographyVII.8 Mathematics and Economic ReasoningVII.9 The Mathematics of MoneyVII.10 Mathematical StatisticsVII.11 Mathematics and Medical StatisticsVII.12 Analysis, Mathematical and PhilosophicalVII.13 Mathematics and MusicVII.14 Mathematics and ArtPart VIII Final PerspectivesVIII.1 The Art of Problem SolvingVIII.2 “Why Mathematics?” You Might AskVIII.3 The Ubiquity of MathematicsVIII.4 NumeracyVIII.5 Mathematics: An Experimental ScienceVIII.6 Advice to a Young MathematicianVIII.7 A Chronology of Mathematical EventsIndex NEXTWhich Math Book Do You Regret Not Reading Earlier