Home

Third Isomorphism Theorem for Groups

Third Isomorphism Theorem for Groups Let \( G \) be a group and let \( H \) and \( K \) be normal subgroups of \( G \), with \( H \leq K \). Then

  1. \( K / H \unlhd G / H \)
  2. \( ( G / H ) / ( K / H ) \cong G / K \)

Read more

Liouville’s theorem on diophantine approximation

Liouville’s theorem on diophantine approximation Let \( \alpha \) be an irrational number that is algebraic of degree \( d \). Then for any real number \( e > d \), there are at most finitely many rational numbers \( \frac { { p } } { q } \) such that \( \left| \frac { p } { q } - \alpha \right| < \frac { 1 } { q ^ { e } } \).

Read more

Logic proposition for partition conditions

Corollary

If

  1. \( \forall s \in S, s\in A_1 \cup A_2 \cup \cdots \cup A_n \, \land \, A_1,A_2,\ldots,A_n \) are pairwise disjoint
  2. \( s\in A_i \implies s \in B_i \)
  3. \( \forall s \in S, s\in B_1 \cup B_2 \cup \cdots \cup B_n \, \land \, B_1,B_2,\ldots,B_n \) are pairwise disjoint

Then \( \forall s \in S, s\in B_i \implies s \in A_i \)

Read more