Sheet4 Q4
sheet3 C1 Strong and weak convergence in $\ell^1$
Sheet4 Q3
Sheet3 B5
Sheet3 B4
Proof. (β) By Proposition 4.3 $(x^{(n)})$ converges weakly implies it is bounded. The standard basis vectors $e_k$ belong to every $l^p$, and hence $e_k β l^q=(l^p)^*$ where $q=\frac{p}{p-1}$. If $x^{(n)}=(x^{(n)}_k)_{k β β}$ and $x=(x_k)_{k β β}$ and $x^{(n)} β x$, then for each $j$ \[ x^{(n)}_j=β¨x^{(n)},e_jβ©ββ¨x,e_jβ©=x_j. \] (β) For all $yβl^q$ and $Ο΅>0$, let $y^{(k)}$ be the sequence $y$ truncated at position $k$. Since $y^{(k)}βy$, β$kβ β$ such that $\|y-y^{(k)}\|_q\sup_{nββ}\|x-x^{(n)}\|_p<\frac{Ο΅}{2}.$ By HΓΆlder's inequality $$ |β¨y-y^{(k)},x-x^{(n)}β©|β€ \|y-y^{(k)}\|_qβ \|x-x^{(n)}\|_p<\frac{Ο΅}2.$$ Since $y^{(k)}_j=0$ for $j>k$ and $x^{(n)}_jβx_j\ βjβ€k$, there is $Nβ β$ such that $|β¨y^{(k)},x-x^{(n)}β©|<\frac{Ο΅}{2}$ for $nβ₯N$. \[ |β¨y,x-x^{(n)}β©|β€|β¨y-y^{(k)},x-x^{(n)}β©|+|β¨y^{(k)},x-x^{(n)}β©|<Ο΅ \] Since Ο΅ is arbitrary, $β¨y,x-x^{(n)}β©β0$. Since $y$ is arbitrary, $x^{(n)}βx$.
Β§3.9. The normal form of cubic
Sheet3 Q5
Sheet3 B3
Sheet3 Q4
323 post articles, 36 pages.